AD-ESTO N Lo
UNCLASS'HED (Conv 17 of 49 coples =

AD-A261 9
AR I'I! !Illlll'

IDA PAPER P-2769

AN EXAMINATION OF
SELECTED SOFTWARE TESTING TOOLS: 1992

Christine Youngblut

Bill Brykczynski, Task Leader

December 1992

Prepared for
Strategic Defense Initiative Organization

Approved for public release, unlimited distribution. January 13, 1993, “|

| 93-06000
83 3 23 045 AR A

INSTITUTE FOR DEFENDE ANALYDMEDS
1801 N. Beaurcgard Street, Alexandria, Virginia 22311-1772

UNCLASSIFIED IDA Log No. HQ 92-042571

DEFINITIONS .
DA publishes the following documents to repart the resuits of its work.

Reporis

Reports are the most authoritative and most carefully considered products IDA publishes.
They normatly embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. 1DA Reports are reviewsd by outside pansis of experts
1o ensure their high quality and relevance to the problems studied, and they are rsleased
by the President of IDA.

Group Reports

Group Reports record the findings and results of IDA established working groups and
paneis composed of senior individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewsd by the senior individuals
responsibie for the project and others as selected by 1DA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers

Papers, aiso authoritative and carsfully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expectsd of refersed papers in professional journals or
formal Agency reports.

Documents

IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the procesdings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intanded use.

The work reported in this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defenss. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
refiscting the official position of that Agency.

© 1992 Institute for Defense Analyses

The Government of the United States is granted an unlimited license to reproduce this
document.

REPORT DOCUMENTATION PAGE OMB Noy 07040188

Public reporting burden for this coliection of information is estanated to average 1 hour per r including the time for reviewing mstructions, searching existing daia sources,

gathering and maintaining the data needed, and campleting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headdgt Services, Di for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1992 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Examination of Selected Software Testing Tools: 1992 MDA 903 89 C 0003

Task T-R2-597.21

6. AUTHOR(S)

Christine Youngblut
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. mpo%-ht«mc ORGANIZATION REPORT

Institute for Defense Analyses (IDA) IDA Paper P-2769

1801 N. Beauregard St.
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
SDIO/SDA REPORT NUMBER

Room 1E149, The Pentagon
Washington, D.C. 20301-7100

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, unlimited distribution. January 13, 1993. 2A

13. ABSTRACT (Maximum 200 words)

This paper reports on the examination of 27 tools that provide for test management, problem reporting, and
static and dynamic analysis of Ada code. It provides software development managers with information that
will help them gain an understanding of the current ilities of tools that are commercially available, the
functionality of these tools, and how they can aid the development and support of Ada software. During the
course of the examination, the static and dynamic analysis tools were applied to a sample Ada program in order
to assess their functionality. The test management and problem reporting tools were also subject to a practical
examination using vendor-supplied data. Each tool was then described in terms of its functionality, ease of use,
and documentation and support. Problems encountered during the examination and other pertinent
observations were also recorded. Available testing tools offer important opportunities for increasing software
quality and reducing development and support costs. The wide variety of functionality provided by tools in the
same q:ltegory. however, and, in some cases, lack of tool maturity, require careful tool selection on behalf of a
potential user.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Software Testing Tools; Static & Dynamic Analysis; Problem Reporting; Ada. 504
16. PRICE CODE

17.SECURITY CLASSIFICATION| 18. SECURITY CLASSIFICATION [19.SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT SAR
Unclassified Unclassified Unclassified

- Standard Form 298 (Rev. 2-89) ‘
NSN 7540-01-280-5500 p.,%o? ANSI Std Z%9-18

UNCLASSIFIED

IDA PAPER P-2769

AN EXAMINATION OF
SELECTED SOFTWARE TESTING TOOLS: 1992

Christine Youngblut Aecosion For

Bill Brykczynski, Task Leader NTIS CRA&I g
O

DTIC TAB
Ui annou.:ced
Justification

Dist ibutio)]
.
Availability Codes

December 1992 Dist Avail and]or

Special
A-1

C o my yor
DTIU CAVINPNY L 4 Lw-::xcm 1

Approved for public release, unlimited distribution. January 13, 1993.

D

]

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-R2-597.21

UNCLASSIFIED

PREFACE

This paper was prepared by the Institute for Defense Analyses (IDA) for the Strategic
Defense Initiative Organization (SDIO) as a follow-on effort for Subtask Order T-R2-
597.21, “Software Testing of Strategic Defense Systems.” The objective of this subtask is
to assist the SDIO in planning, executing, and monitoring software testing and evaluation
research, development, and practice.

In support of this objective, IDA conducted an examination of 27 tools that support soft-
ware testing. These tools provide for test management, problem reporting, and static and dy-
namic analysis of Ada code. This paper presents the results of the examination and provides
software development managers with information on current capabilities of available test-
ing tools.

This paper was reviewed by the following members of the IDA research staff: Dr. Rob-
ertJ. Atwell, Dr. Dennis W. Fife, Dr. Randy L. Garrett, Ms. Deborah Heystek, Ms. Audrey
A. Hook, Dr. Richard J. Ivanetich, Dr. Reginald N. Meeson, and Dr. Richard L. Wexelblat.

SUMMARY

Software testing is labor intensive and can consume over 50% of software development
costs. Rarely is sufficient, effective testing performed as evidenced by the fact that a failure
rate of 3 to 10 failures per thousand lines of code is typical for commercial software. More-
over, the cost of correcting a defect increases as software development progresses; for ex-
ample, the cost of fixing a requirements fault during operation can be 60 to 100 times the
cost of fixing that same fault during early development stages. Consequently, timely defect
detection is important. Automated testing tools can alleviate these problems by providing
managers with more insight into the progress of test activities, by reducing the traditionally
manual nature of testing, and by encouraging the application of improved testing practices.
Yet reviews of testing practices and tool usage reveal extremely poor exploitation of avail-
able testing tool support. Recent surveys of test practitioners indicate that there are few
common test practices and only scattered tool usage.

Over 600 testing tools from some 400 suppliers were identified during the course of this
study. From these, 27 tools were selected for examination. These tools support test manage-
ment, problem reporting, and static and dynamic analysis of Ada code. Consideration of
tools that are dependent on special hardware, limited to regression analysis, or form an in-
tegral part of a computer-aided software engineering (CASE) system was postponed for a
later effort. Also, care was taken not to duplicate the tool assessment efforts of other groups.
During the course of the examination, the static and dynamic analysis tools were applied to
a series of Ada programs in order to assess their functionality. The test management and
problem reporting tools were also subject to a practical examination using vendor-supplied
data. Each tool was then described in terms of its functionality, ease of use, and documen-
tation and support. Problems encountered during tool use and other pertinent observations
were also recorded. ‘

Significant findings from this study include the following:

» Test management tools offer critically needed support for test planning and test
progress monitoring. This category of test tool is perhaps the latest to come to mar-
ket. With the exception of reliability analysis tools, which are becoming more com-
mon, progress monitoring capabilities are infrequently available and primitive.

vii

Nevertheless, the ability of these tools to manage a collection of test information is
very valuable and the data available from the analysis of this information is urgently
needed to support the documentation and management of test activities.

Problem reporting tools offer additional support for test management by provid-
ing insight into the status of software products and the progress of development
activities. These tools are primarily intended to support the tracking of identified soft-
ware problems and the management of problem resolution. They also provide infor-
mation on the status and quality of software products; in particular, they capture the
data needed for software reliability modeling. This data can also provide valuable
insights into the status and quality of the software development processes themselves,
and so support continuous process improvement.

Available static analysis tools are essentially limited to facilitating program
understanding and assessing characteristics of software quality. They provide
some minimal support for guiding dynamic testing. The types of defects tradition-
ally found by static analysis tools are now routinely checked for by Ada compilers.
Currently, complexity analysis, control flow analysis, and software browsing are the
most common static analysis functions supported.

Although many needed dynamic analysis capabilities are not commonly avail-
able, tools are available that offer considerable support for dynamic testing to
increase confidence in correct software operation. Dynamic analysis is the princi-
ple method used for software validation and verification. Here automated support for
the preparation of a test bed, generation of test data, and analysis of test results is
urgently needed. Tools that provide this functionality will decrease the cost of testing
by increasing the productivity of the human testcr and increase software quality by
supporting test data adequacy analysis and test repeatability. Tools that offer elements
of this type of support are available.

Tools of similar types vary widely in the capabilities they provide and in characteristics

such as tailorability and robustness. Existing testing tools are generally easy to use and sup-
ported by good documentation. There were instances during this study, however, where dif-
ferent tools gave different results when performing the same function, for example,
calculating cyclomatic complexity. Moreover, some of the tools contained faults. While
most failures were trivial, others rendered a tool unusable.

Available testing tools offer important opportunities for increasing software quality and

reducing development and support costs. Even so, there are a number of specific problems
with these tools and a lack of needed functionality that may handicap testing of Ada soft-

» There is a lack of tool support for testing concurrent Ada software.

« There is a need for increased tool integration to provide more complete coverage of
testing activities.

viii

*» There is a need for integration of testing tools into CASE systems to provide
improved feedback into development activities.

* There is a lack of data on the cost effectiveness of particular test techniques and tools
that can be used to encourage and guide tool use.

ix

PART 1 STUDY OVERVIEW

1. INTRODUCTIONoooiiricieeeteirieeneeesiesearessessesee e stassenssssstsnsssssssesssasnsesssssssenssnsas 1-1
L1 PUIPOSE ..voeerieeeerecenitieiiineiss e tsat s se e st s te e esss e e s sse e b e st assase st auns e saasnasas 1-1
1.2 SCOPE vereeeneiretencnrcstetnetsr st sn s st sa s s s bbb s s an s e s s s s b se st ar s et esnasesaanaanas 1-1

2. STATE OF PRACTICEoceoeereeeceserenteeenreseeseenesesaeesesensaesssesssmsssesesnsssessssneosesss 2-1

3. TEST REQUIREMENTS AFFECTING TOOL USEccccovvincinicniniiinacenns 3-1
3.1 Affect of SDIO Software Test Requirements on Tool Useccoevueevinnens 3-1
3.2 Affect of the SEI Process Maturity Model on Tool Usecoecerircncennecnncas 33
3.3 Affect of the Software Metrics Program on Tool Usecccocccoviieininvciccinancne 3-5

4. APPROACH AND METHODSooiiireeeerecsenncetsnresessensesstsacenessessesssnesnens 4-1
4.1 TOOI SEIECHON ...oocoverereerreecrecerereensteriaessieasstessasssesssssssssessssssssssesssssessessnsasssssnses 4-1
4.2 Method of EXaMINALONccceievereenrrnienrnentesseersecteesencerssessessasesssnessessaesseessesessns 4-4
4.3 CASE System Support for Software TestiNgc.ccoveeivuecrmernnicnierisnsseceenens 4-5
4.4 Development Environment Support for Software Testingccccocoovevivnnienennns 4-5

5. TEST MANAGEMENTcuocrrinireerinresesneersenestssensssstsseenssassacssnsesesesmsss 5-1
5.1 Test Planning and DOCUMENLALIONcocceeeriveiirirnnnnntinmereienscsrserecuesessesnsssessins 5-2
5.2 Requirements MapPiNgcccoceeimevceienenrerseseirnsssssessinieisssssessmssesasssssssssesssasens 5-3
5.3 Test Progress MOMItOTINGcocoeviviiinreieiseisnseesnesnsissessisessssssssessessessessennsns 5-3
5.4 Productivity ANALYSIScccceovniereeiirseenrsnesasstensssnessessnesssssnsessosostosessessssnsossssens 5-5

6. PROBLEM REPORTINGcccosmmiireeirecerenncennenesensesssesosestsssssssnensatsensasssssssoses 6-1
6.1 Report Types and Details Capturedccccieeevevernnisircessinveccsscsssensnssessnesssaeens 6-1
6.2 IMPOTt CapabILitycoceruerererinccnsirarnnsnssarsansansscssassonssarsssestssosenssssesasesesasesssosassons 6-2
6.3 Reporting Capabilitiescoceeerrcrsenrensenrenneseecsssscessanssnssesasssssnesssssessessessseseen 6-2
6.4 Standards CONfOIMANCEcccceccruenrrreeceereencsnesnentessssssansessanensssssnssssssennossoeessssns 6-3
6.5 Distributed ATCRItECIUIEcccecveerierierseererecerransesssaessessnessscssasnossessssssssnnsssessasssses 6-3

T. STATIC ANALYSIS ... rirntinreentnesnrnssentsesessesasanestascessoreesssotsnssassesssses 7-1
7.1 Complexity ANALYSIScccocirviiiennnicreenenssonnecresnesnssenesssenesssssesssesesassessassssences 7-1
7.2 Data FIow ANalySiscoveuivecvmnneeniinrenncsniesscsessiesssneessesssssnsssssssessessnsasasensas 7-3
7.3 Control FIOW ANALYSIScccoeeeevrnncrsnnrirrecnenscraeseessensnsscnnssssssesecssssessssassessesssssnaes 7-3
7.4 Information FIOW ANALYSIscccccvrirneenrinrrnnincsniennescnrenseensssssseesessscnsassnnesssn 7-5
7.5 Standards Conformance ANAlySiscccccceerieerreesinecseessaeeneesssessessesseessecasanesons 7-5
7.6 QUality ANALYSIScccovvviiieirtiriiiirrecrceneereeaeseeserstessessrnessessseserasesesaresessessesseones 7-6
7.7 Cross-Reference ANalysisc.ccoceeveereecnniesenrnssensncsssnvaressssesssesseesosesessosenenssene 7-6
T.8 BIOWSING ..coccueiriciniinrcnninirisinisesinenssestssssssssssassessnessessaessssasessssssossssssssassssssnsessas 7-7
7.9 Symbolic EVAlUGLIONcuceiierinerrteneerevecnenvenessesnosnasssnsssssssensssassasssssessssas 7-7
7.10 Specification Compliance Analysiscccccveereccnrreerenrneceeseseereeseseesesesssasens 7-8
T 11 PIEtty PHNUNEooviurriirnieiintiinestsencsesesrnassssnsaesssssasessesesssnssassesssnsssssesnsasssns 7-8

8. DYNAMIC ANALYSIS ...titetinsicnenennenneseenaesnersesssssestesesssessesassassesssnssssssssenens 8-1

8.1 ASSErtion ANALYSIS ...ccccveeriiririieeieenctiirireeneeeserectas e eresssecrsaneesssrecnsesssanessnsaesonee 8-1

8.2 Coverage ANAIYSISccooeroiiiceiiiiiiiiinec et e b 8-2
8.2.1 Structural Coverage Analysiscccceeerveniirencenreiiiicnneceecene et ceeceeeaes 8-2
8.2.2 Data Flow Coverage ANalysiscocccvovveeeciereverennecrnnnnnieessreseseesssnnnesenens 8-3
8.2.3 Functional Coverage AnalysiSccccceeeiiemerriereccernnnereneseneeessteessaesnnnes 8-4

8.3 PIOfIlING ..ceooinrriniieeeiiniininticece st sete st ense st csassnt st srassr b saes s eaneens 8-5

8.4 TImIng ANAYSIS ...ccccovimniiiinniiiiiieccciee et sbeab essareas 8-5

8.5 Test Bed GENETationccccceveiveeneiiiirruerrerreeesarasaessnessseosseraseesreessesstessnsessesssnen 8-5

8.6 Test Data Generation SUPPOTLcouoviiecirnrrermrneecesssnrssecrenseseesasosssessssesseseses 8-6
8.6.1 Structural Test Data GEnerationcccoeceereereiecciroemenceessessseceesseeeseenaens 8-7
8.6.2 Functional Test Data Generationcoccoccoeveeveecenvnnrneenrneecsseesnnnnennnnns 8-7
8.6.3 Parameter Test Data Generationccccecceevceveernneenrenenveeseesseersensaesannns 8-8
8.6.4 Grammar-based Test Data Generationccecceeeeeveeveenereeseenecnenennnne. 8-8

8.7 Test Data ANALYSISccovvierieeeniiruininneeserentescsennnteseesssstestresesssesseessessssaeesaassseas 8-8

8.8 Dynamic Graph GEnerationccoeeeeeeveenveeeineennreesicsesessseeeseessesessesssssessessones 8-8

9. FINDINGSooioeireeretreeereneeersseseeseescsansesasssessesssssessssessesssstessasasssssesssassssssansassans 9-1

9.1 Status of Available TOOISccecevirriimiirneinriirrecreseesere e eeaerrreeesassseesesevessansnanne 9-1

9.2 Significant DefiCIENCIESoeeeviriiniieeiinniiireecenntct et cnese s o 9-4

PART Il TOOL EXAMINATION REPORTS

10. INTRODUCGTION ... eeiieceeiccveesiercvessvvesvvservesssssssssssssrsessssssssssssssssesssenssnssssssesan 10-1
L1, AdAQUESLooouirieceeerecceeserensssnresnssncessernesssssesseessessaessessesseessessesssessessesssensessassaens 11-1
11,1 TOOL OVETVIEWccueeieceeerrrerirrreereienrnessseessnessssesssnosssssssssssssssessssssssssssssessassones 11-1
11,2 ODSEIVALIONScoeeveeerneerireecreesseresesesssssessesssassssssesssssssssesosesecssesesssesssnsssssss 11-3
11.3 Planned ADQIHONScccoviveieeicreenienieincieecereeeeeecsseesssesssesesssessssesssnssessmsanses 114
11.4 Sample OULPULSccovvverimriieniiritiaeneniresirncesteeeneeesesssssssssesesesnessecsensassaneos 11-4
12, AUIOFIOW-AQAQooeeererteeerreeeesertercctecnesressesseseesesssessensesassssossessssnsessssmsnss 12-1
12,1 TOOI OVEIVIEWcooveeveernrirnreereeereeenesieseesaessresssesssesssessssssssessrssssessessssessasannes 12-1
12.2 ODSEIVALONSccouecreecrerienrrnreeraestnreesessessesssessessesssessessesssssssosssssossessasssosssane 12-2
12.3 Planned AQAItIONSccceevueeiiercieereiiieciennioienseesssesressssesssessesesssssessssssssassnses 12-2
12.4 Sample OUIPULScocueriiiiiiiiniieeentreeteeeneseeesscseesas s s ssssasssesessesanssnsases 12-3
13. DISTRIBUTED DEFECT TRACKING SYSTEM (DDTS) ..coovveveeeeeeeveeeeennene. 13-1
13.1 TOOI OVETVIEWooeeveereiecireeenenreeserenresessseessssesnesseessesnsannessessssssessanseasasens 13-1
13.2 ODSEIVALONScocerrreneerieerernrenreeirensiseeresissesssessessesssssssssesonssnnessssssssessnsensssnes 13-3
13.3 Recent Changes and Planned Additionsc.c.ccveveeeecmencerineeneenceennenreene. 13-4
13.4 Sample OQULPULScooeviuimimieiriicrraeecteeeseeesreeene e ssestesesseaesessssesesessesssnns 13-4
14. EXPERT DEBUGGING SOFTWARE ASSISTANT (EDSA)ccveevveveennnn. 14-1
14.1 TOOl OVETVIEWceerivirirecrrenieitestinressessieeissessseseessesssosssesessnsonsessessssnssnsesnsan 14-1
14.2 ODSEIVALONSccccerreenrereererntrrenanrnersissreseessisssossessessesssessassssansesssssssasessessas 14-3

14.3 Sample QUIPULSccovvircviniiinmiiiinrerirniii ettt 14-3

15. LDRA TESIDEAoeooeeeeeereieieieiiiieisieeerreeesteeessesenresesassesaes ssteseanesssnnsassesssssessnsnennes 15-1
15.1 TOOL OVEIVIEW ...oeeeeeeieeereeeieseseererreesesenstssassessssnennesssssesassasstetstasasssrnsreasessosen 15-1
15.2 ODSEIVALIONS ..cceveeeeeeevererinrieeesseresssseessssrensnsssssasessasssssststassssessssessnensessnsssssans 15-5
15.3 Planned AQGQILIONSo.eeceeevvrineeesveseiiseesssssssesssessssassssssessacesssesssssssessnsessoessnsess 15-7
15.4 SaMPIe OUIPULS ...c.covrviimneiriicriniiriini e snssststas st st enenenene 15-7

16. LOZISCOPE ...covmrrmrrreininiieriniinsteneansersasstasasnsatssesssssssessssasssnstsnsessonsacasanonsssssasssossns 16-1
16.1 TOOL OVEIVIEWcoceirrririrreeeesrareesrsnterersssessssasssssssassesssrssasssssssssssesssessnsaessssans 16-1
16.2 ODSEIVALIONS .couveerenreeeverrrsresrsesessseescreersnssessassssesesassassssessasssssasssssasssssesssaseessass 16-5
16.3 Planned AQGQItIONSc.ccooveevereveriernecraeimesssessanessessssessessnssessesseesssnesssesssasssessasssn 16-6
16.4 Sample OQULPULSccccevicieriniiriiriiistirtarircsesesneseesssessetsesessessssnesssnasessaassasses 16-6

17. MALPAS oottt e sesestseesstesesasssstesessseasssssansesessstassneessstansnsnsesasssesaeeers 17-1
17.1 TOOL OVEIVIEW ...ceeeeereriecrereeresrneeesrnereessssseessraasessssnanssssscsosssansssssssassssossnassssssnns 17-1
17.2 ODSEIVALIONS ...ccceveeeereereeeesrrreecsreessssessssessssesssssessssesssassssessssssssssssenssassssessssssssscs 17-2
17.3 Planned AdQItIONSccoceeereeeenrnrerserosuneessseesueesescocsseeessnssssaasssssassannesnsssssssessnss 17-4
17.4 Sample QULPULSc.ccoveeuimniririiieeierseiniiissensssenssnssesssssstassssastesasasssasessesassasess 17-4

18. QES/MANAGERocoireieeiceeneneeirstnraesessnesesasesesssssssstsssssassssssessassorssssssesssensens 18-1
18.1 TOOI OVEIVIEWceoeeevrvecerveeesrrrresorvvressrnsssssssssssesssasssssssesessssesensasnsssssssanesssons 18-1
18.2 ODSEIVALIONS ...oeecvevverercnreerrnesaressseessssassssesssssssrassessasessassssasssscsesssnasssssnassssessns 18-3
18.3 Planned AdGItIONSccoovvveeeeirrrveenruiiecssrerisssssesesssssessssessessssnssacsnsesessrnsasasssns 18-4
18.4 Sample OQULPULSccrvieiiriiicriniitericcniiinteississesnssessessssessenessssessessessssasessases 18-4

1O, SOFITESL ...ceeeerieneerrniecrrersrneesrsresssssssssessstessasessssasessasssnssssssssssssasssassssssesassnsanssssnasses 19-1
19.1 TOOI OVEIVIEWeeveeeeeeeeninnneensntesssssneesssssnessssstsessssassosssnssssssssassssrasessassasseses 19-1
19.2 ODSEIVALUOMNScorvreeeeerrereeeecrrieeessseeruasrarsssessssessassssssssssssessacsssnsassrassesssssnsssss 19-3
19.3 Sample QULPULSc.ceeveirmnriirinnnreccterisirnssisesessesissesessesesnenssesassasssesesssnesess 19-4

20. SQA:IMAANAZETcovuireriniireecectenserestttireeseeeseresaeessnssaasssssessesssnsssssassassuassnnssssnasses 20-1
20.1 TOOI OVETVIEWceeenreeineerrreeirieeeseriesesessseesssasesssaesssssssassesssssssssassssssssasasssnsen 20-1
20.2 ODSEIVALIONSccceevererneerrreerrsrecsseeessteesssnsssssessossesssesssssessassssssssssssassssssssassessssans 20-4
20.3 Recent Changes and Planned Additionsccocvevevvininnninnicnncssenseccesennens 20-5
20.4 SaMPIE QULPULSceevurverimrreiirriiriitenrsesstesnnssssssstssnasesstsnsssssssssessessesssosssassnsns 20-5

2], SRE TOOLKIToveeiiecteeecttenireecntesnreessseesssesssessssssosssssssssessssnessssassssseossssesses 1-1
21,1 TOOl OVEIVIEWoceeerereeiecrreceecneeesisneerseesssassesssssssesssssesesssessssessssssssssssessane 21-1
21.2 ODSEIVALIONSceeereereeerreenreeasuenssnessnessecressesaesssaessasssasossassssssssessesssssssnsessnsssseses 21-2
21.3 SamPIe OQULPULScovvueuirinriceercnnnareeneessessssssessesssassssesessssescsnssensesssessasassesn 21-3

2, T eceeeeeceerteeeesrreesreesreesraessaesseessaresae s en e aasrse s ba st et e b ae R aeebaeea R e e Rs e st aesbnesnneenstann 22-1
22.1 TOOI OVEIVIEWeeirveecrnenrnrnrreninesesnenseesseressesssessseessseessesssassssessesesssssssassnessssene 22-1
22.2 ODSEIVALIONSeovvereenereveeseeassessseossuessseossessasersssessessssesssessssssssssosssssssssessnssassns 22-4
22.3 Recent Changes and Planned Additionscccceveveeuercnenesesnnnnrneereresessrenns 22-5

xifii

22.4 Sample OQULPULScoceceririiiiiieiiitecciits ettt er e eve e st sr e et 22-5
23, T-PLAN oottietteetectecte s e sttecbe st s esee s saesssaasnsaesstaesres s sbtasasaasssessnsanseeesiseasnns 23-1
23.1 TOOI OVETVIEWeeeeneeeeeeeietee e etiteeeetessseeesseessseassssessssssssaessseesssasensesssseesssnnnnss 23-1
23.2 ODSEIVALIONSeeeeeeeeeeeeiiorrereesseeeesseessssssesassssasesssssasssesessssssessssssesnssssssssssansnns 23-4
23.3 Recent Changes and Planned Additionsc...ccccoviniiinmnicnninvinnciinnienenenneeas 23-5
23.4 Sample FIZUIESccovoveeiiiiiieiiiicninis sttt r e s sa s 23-5
24, TBGEN and TCMONoooooiiriiireectiniieerstereeneenseessaesssessssassssasssssessssssssssssennns 24-1
24.1 TOOI OVEIVIEWovviiirirrieertreereneeeesuueeesiseesessanessssesasseneeosssnnasnsssesessasessssssnessnnes 24-1
24.1.1 TBGEN OVEIVIEW ..cocvveirverieiicieeeieeenrresnsesenessesesenenssesensesssesssssessnsans 24-1
24.1.2 TCMON OVEIVIEW ..ooviirieeiereiiernererneresesstesasseesecssennesssessessessssssasessssnses 24-2

24.2 ODSEIVALIONScccoovveernrreererrererseeeessueesssseessssnnsssssessssssseessurmesssnsessnssssssssseesasnns 24-3
24.3 ReCENt CRANEEScvveeeecremiurecerseariesiensesasssaeseteesssestsostesanesseessneseessssssnnsnsees 24-4
24.4 SamPle QUIPULScovirveeriiiireceseieiteesc st csns s esae st s sesssssasesanesrsesrnesns 24-4
25. TCAT/Ada, TCAT-PATH, S-TCAT/Ada, TSCOPE, & TDGenccccevveueennn. 25-1
25.1 TOOI OVETVIEWeeecrreeeeeecreereeestaennnesecessnesssessssessssssessaassssestesssssasssssessenanne 25-1
25.1.1 TCAT/Ada and S-TCAT/Ada OVEIVIEWccoveevmrimierrerneeecreeecrneeennnens 25-2
25.1.2 TCAT-PATH OVEIVIEWcccoveereeeciierrenieeerreseeeenanesseeesssesssssssssesanenns 25-3
25.1.3 TSCOPE OVETVIEWoeveerrirrererieenreeeisraeeseescesssessaessesssassssessassnssosas 25-4
25.1.4 TDGEN OVEIVIEW ..cuvvnriereccirenereneetennecreiesaessassscssrsrnseesssessssssesssssassssses 25-5

25.2 ODSEIVALIONSccoeverrreererecrnesrsesssrrersnesssessssaessasssssesssasssstasssasessassassesrssssssasansns 25-6
25.3 ReCemit CHANMGESc.cvvveereecrerinecreeruneseesseessenaesssssssesssessstassesnnsssssassssosseessssssns 25-7
25.4 Sample OUIPULScccourueiierinieeiinrirereectntntsecse st eess et sesassassesesessesesssssens 25-7
26, TST oeeerceerrerteceecresesesesaeessesssessnes s e sa st sesseesrbesasesssesssesssessnssbsesseessessntsnnents 26-1
26.1 TOOl OVEIVIEWccourieiireeeiienrenreriireneerterseersesstesssesseesssesssessssessesssssssessaennnes 26-1
26.2 ODBSETVALIONSccreereererceesserrenensesssensessessassansasssessaessssnsssansesssessesssssasstassassasss 26-3
26.3 ReCent ChanEEScccceereeereenreeriiiiicriessressiesseesesessessssssanesecssesssesssssssssssessssen 26-4
26.4 SamPIe OULPULSocceeeecercernrientiserernresseessesssessestessssesssesssessnessasssessssssssessssnnes 26-5
27. Test/Cycle and Metrics Managercocccceerverecenenenerenrennennesesssssesssessesasssnnens 27-1
27.1 TOOI OVETVIEWcoeccrereceeeieniernrcteneneeessensecseessessessessssssessssseessssssossessessssnsesnsos 27-1
27.1.1 TeSt/CYCle OVEIVIEWcccereueerrreerenreriereresensessesreneesssoseesessessessessessens 27-2
27.1.2 Metrics Manager OVETVIEWcccoecnreererereererenenrennsrerensessesesssessennses 274

27.2 ODSEIVALIONScccveereerrreeeerieesrescsesssessecsseosassssessseessesssssnsssnnsssessnssessossessssanes 27-6
27.3 Planned AddItIONScceeeeiieeeeitiiceecriceecetenteeeeeeseeeeeeeee e eeeeesnaesnennnesanes 27-6
27.4 SaMPIE OQUIPULSocueecerrienirrreerrenantesiesteeereeseetessestessensesessessessessonsorsensonsossans 27-7
28. TestGen, QualGen, GrafBrowse, and the ADADL Processorccooeeeevvvennnen. 28-1
28.1 TOOI OVEIVIEWcevvereeeeenriiecteesieeet it stesessresseeseentostesassssessesassnsesssesessssennen 28-1
28.1.1 ADADL Processor OVEIVIEWcccovuieuieeerreerierereessesssessersessesssesaens 28-2
28.1.2 TeStGEN OVEIVIEWccueeeeeeereniiiereeee e caeeseeseeeeseeeseessessesssnsssnssssan 28-3
28.1.3 QUAIGEN OVEIVIEWooverrreeereeeceece et eneece e seee e sessseseeeessaeneen 28-4
28.1.4 GrafBrowse OVETVIEWcovcveeeererreievreresiesiesisereessesesesessessessesssnssssenes 28-4

28.2 ODBSEIVALIONS ..veeeneveeireerereeeseeeasseeessessnssaartessssesssssessssessasssssssesssseesssessansessssens 28-5

28.3 Planned AdditIONSccccevivirieniiiiniincniiiercrenee ettt 28-6
28.4 Sample OQUIPULS ...c..oveiuririieeieereraercte sttt ettt st ent e st assasasnneseente st astessanses 28-6
REFERENCES ...c..ccoovsevsosseeseenssssssssssssssresssssssssssss s ssssssssssssssssssosssssssses s A-l
ACRONYMS AND ABBREVIATIONS........ccooiiiiirinceeiinintcnienceassanicsesssssnenns B-1
GLOSSARY ...ttt eestseesesse e st ssesasssesesessantass et stesensesesnasosas C-1

XV

LIST OF FIGURES

Figure 2-1. Tool Usage Reported in Software Test Practices Surveyc.cccooevirncuecene 2-3
Figure 11-1. AdaQuest Unit Nesting RepOrtcccceevieenennmnininninieenienceeereeseeninenes 11-5
Figure 11-2. AdaQuest Branch Report ... 11-6
Figure 11-3. AdaQuest Coverage Test Run Report...........cccooviinirininniccnnnncnnecinnennne 11-7
Figure 11-4. AdaQuest Unit Coverage Reportcooeiveviiniiiicntinienenenceneversesscesennnnn. 11-8
Figure 11-5. AdaQuest Branch Coverage Detail Report........cccoceeivvriveenencnccersenennnnnnen. 11-9
Figure 11-6. AdaQuest Branch Coverage Summary Reportc.cccocueenieneiiivncennnnnnn, 11-10
Figure 11-7. AdaQuest Branch Coverage Report Showing Test Runs............cccceceeneen... 11-11
Figure 11-8. AdaQuest Branch Coverage Not-Hit Reportc.cocooveevevnininevcninncnnnnn. 11-12
Figure 11-9. AdaQuest Coverage History Detail Report.........cccovvevceenirceninenecennennne. 11-13
Figure 11-10. AdaQuest Coverage History Summary Report..........cc.cceeveveeenvecerunnnnne. 11-14
Figure 11-11. AdaQuest Interval Test Run Report.........ccoceeveevenrecnenncnenrceneeenenenne 11-15
Figure 11-12. AdaQuest Interval Timing REPOTt........ccovceenirerecneerenencnerieeeresesecvcnnens 11-16
Figure 12-1. AutoFlow-Ada Page 1 of 6 Flowgraph for Function ALTERNATE............. 12-4
Figure 12-2. AutoFlow-Ada Page 2 of 6 Flowgraph for Function ALTERNATE............. 12-5
Figure 12-3. AutoFlow-Ada Page 3 of 6 Flowgraph for Function ALTERNATE............. 12-6
Figure 12-4. AutoFlow-Ada Page 4 of 6 Flowgraph for Function ALTERNATE............. 12-7
Figure 12-5. AutoFlow-Ada Page 5 of 6 Flowgraph for Function ALTERNATE............. 12-8
Figure 12-6. AutoFlow-Ada Page 6 of 6 Flowgraph for Function ALTERNATE............. 12-9
Figure 13-1. DDTs Sample Defect REPOItccceerecrreerrreceeeeneersrsiseraseeessessessesesssssenes 13-5
Figure 13-2. DDTs Management Summary Report: Defect Reports.........c.cccoreceevencnnennnnne 13-6
Figure [3-3. DDTs Management Summary Report: Defect Arrival and Repair Rate

(AILLEVEIS)ueeereereeeereeceensrcieeessessesssesssessssssssessessassssesssesossressesssnssnnenes 13-9
Figure 13-4. DDTs Management Summary Report: Defect Arrival and Repair Rate

(SEV. 1 & 2).ueeiiiitirrceiiccsenenneeresnrasnssesescssnssnassessssssssassssssssssesessnsasaes 13-10
Figure 13-5. DDTs Management Summary Report: Sample Histograms........................ 13-11
Figure 13-6. DDTs Management Summary Report: Bug Summaries..............ccccovenn....... 13-14
Figure 13-7. DDTs Management Summary Report: General Statisticsc.cceveve...... 13-15
Figure 13-8. DDTs Examples of GUI QUtpUuts.........cccoeveeverenenrerereensincsinenserenconsssmenses 13-17
Figure 14-1. EDSA Threads View of Compilation Unit LL_TOKENS...........cccocereenn..... 14-4
Figure 14-2. EDSA Breaks View of Compilation Unit LL_TOKENScccceueuee..e.. 14-5
Figure 14-3. EDSA Screen of Statement Traversal Using Data Flow of Variable.......... 14-6
Figure 14-4. EDSA Screen of Statement Traversal Using Control Flow in Unit

LL_TOKENSoonncntntnereresnreseresesesssessssssssssesesessasssesessssasssosssssens 14-7
Figure 14-5. EDSA Annotations Example in Compilation Unit LL_TOKENS................. 14-8
Figure 14-6. EDSA Pebbling Example in Compilation Unit LL_TOKENS...................... 14-9
Figure 15-1. LDRA Testbed Management Summary for LL_COMPILE.......................... 15-8
Figure 15-2. LDRA Testbed Static Call Tree of LL_COMPILEccceuvnenenennn.... 15-14
Figure 15-3. LDRA Testbed Dynamic Call Tree of LL_COMPILE..................cc........ 15-15
Figure 15-4. LDRA Testbed Data Flow Analysis of LL_COMPILE............................... 15-16
Figure 15-5. LDRA Testbed Information Flow Analysis for LLFIND............................ 15-19
Figure 15-6. LDRA Testbed Complexity Analysis for LLFINDcccooeceevereeeruennn.n. 15-20
Figure 15-7. LDRA Testbed System View McCabe’s Complexity Measure................... 15-25

xvii

Figure 15-8. LDRA Testbed System View Knots Complexity Measurec..c...... 15-26

Figure 15-9. LDRA Testbed Kiviat Graph for LLFINDccccconiviiininiicccninnenns 15-27
Figure 15-10. LDRA Testbed LCSAJ Analysis for LL_COMPILEccc..... 15-28
Figure 15-11. LDRA Testbed Cross Reference Analysis for LLFIND........................... 15-30
Figure 15-12. LDRA Testbed Dynamic Analysis for LL_COMPILE 15-31
Figure 15-13. LDRA Testbed System View Statement Coveragecocccovveicrinencenee 15-39
Figure 15-14. LDRA Testbed System View Branch Coverage............ccoccovvvcnvincrcnceeee 15-40
Figure 15-15. LDRA Testbed System View Test Path (LCSAJ) Coverage..................... 15-41
Figure 15-16. LDRA Testbed Coverage Achieved Comparison.........ccocceccvueeerevrceenvennne 15-42
Figure 15-17. LDRA Testbed Active Flowgraph of READGRAM...........ccccrvinvcnennen. 15-43
Figure 15-18. LDRA Testbed Data Set Analysis for LLFIND........c.cccecviveecreennnennrnnne. 15-44
Figure 15-19. LDRA Testbed Profile Analysisc.cocoeuvmiieionniiniininiiinceciiiecenecnenace 15-45
Figure 16-1. Logiscope Control Graph of Function LLFINDc.ccccoiiiiiininincnnnnnn. 16-7
Figure 16-2. Logiscope Textual Representation of Control Graph of Function LLFIND . 16-8
Figure 16-3. Logiscope Basic Counts for Function LLFIND.........cc.ccccccvvevrvennnnincennnnee 16-9
Figure 16-4. Logiscope Commented Listing for Function LLFIND.c.ccccccecvrene.. 16-10
Figure 16-5. Logiscope Kiviat Graph of Function LLFINDccccoccecnvrvnunnnennannn. 16-11
Figure 16-6. Logiscope Criteria Graph of Function LLFINDcccoviiiinnninnnunnen. 16-12
Figure 16-7. Logiscope Kiviat Graph of All Componentscccoovivvrsenveenncrccnenns 16-13
Figure 16-8. Logiscope Overall Metrics Distribution for Program Length...................... 16-14
Figure 16-9. Logiscope Overall Metrics Distribution for Cyclomatic Complexity 16-15
Figure 16-10. Logiscope Components per Metrics Category for Number of Statements 16-16
Figure 16-11. Logiscope Overall Criteria Distribution for Testability.........c.ccccveeueueenenn. 16-17
Figure 16-12. Logiscope Overall Criteria Distribution for Simplicity fevenens 16-18
Figure 16-13. Logiscope Quality REPOTt........ocooviuiieuininennciiiecsseiiarcescnnseneesneseseesnens 16-19
Figure 16-14. Logiscope Excerpt from Default Quality Modelccccovveevrrnrnnen..... 16-20
Figure 16-15. Logiscope IB Coverage of Function LLFIND..........ccccevrivinrrcerecrverrennenne. 16-22
Figure 16-16. Logiscope DDP Coverage of Component BUILDRIGHT 16-23
Figure 16-17. Logiscope LCSAJ Coverage of Component BUILDRIGHT 16-25
Figure 16-18. Logiscope IB Coverage Histogram............ccccceereeersenenerreneereeresseneseseennens 16-28
Figure 16-19. Logiscope DDP Coverage Histogram............cccccecevrcivevencnrneseeresenerennns 16-29
Figure 16-20. Logiscope Overall IB Coverage for Input testl.lex.........ccocecerenerevennne.. 16-30
Figure 16-21. Logiscope Overall DDP Coverage for Input testl.lex..........ccccccovvrenrenenn.. 16-31
Figure 16-22. Logiscope Metrics Table of ROOL........ccceocrenrrrrenieseeerinnreereneerenseessssennens 16-32
Figure 16-23. Logiscope Call Graph Path Testability of Root.........cccccceuvrreevenrrnncnnnnnn. 16-32
Figure 16-24. Logiscope Call Graph Component Accessibility of Root.......................... 16-33
Figure 16-25. Logiscope Call Graph Calling/Called Components of Root...................... 16-33
Figure 16-26. Logiscope Dynamic Call Graph of RoOt..........ccccvvvrvecrerereeeenrerereneennnn 16-34
Figure 16-27. Logiscope List of Call Graph Components per Level from Root.............. 16-35
Figure 16-28. Logiscope PPP Coverage of RoOt...........cccouevirrveninenvenreneneienenreresensennens 16-36
Figure 17-1. MALPAS Sample Pascal Code Illustrating MALPAS Analyses.................. 17-5
Figure 17-2. MALPAS Intermediate Language Translation of Sample...........c..ccuu........ 17-6
Figure 17-3. MALPAS Control Flow Analysis of ADVANCE.............ccccoveeerenvreenenen. 17-8
Figure 17-4. MALPAS Data Use Analysis of ADVANCE.............ccccoomevenneecvrenernennnne. 17-8
Figure 17-5. MALPAS Information Flow Analysis of ADVANCEccueuenn..... 17-9

Xvifi

Figure 17-6. MALPAS Semantic Analysis of ADVANCE..........ccccoonnniiniiien 17-10

Figure 18-1. QES/Manager Report Layout..........cccocoevieiiienineniinininniienncicnee e 18-5
Figure 18-2. QES/Manager Map of Master DIIVer.........ccccvvevicriinniincniincniccnienneen 18-6
Figure 18-3. QES/Manager Problem Reportcoceeiiiviiinoiienrcierecercee e 18-7
Figure 19-1. SoftTest Graph Entry Phase Inputcc.cccoovvvvuvemmiriencnenincncecrecnene 19-5
Figure 19-2. SoftTest Variation Analysis Phase Output..........ccccoocveiciinicniinniicnnnnn. 19-9
Figure 19-3. SoftTest Test Synthesis Phase Outputcccoceveeriieeiceicncenvennncnenienneneee 19-12
Figure 19-4. SoftTest Functional Variation Coverage Matrix..........cccoccercruecceieeencneennnn. 19-17
Figure 19-5. SoftTest Test Case vs. Node Name Definition Matrixcccoecenennrennceee. 19-19
Figure 19-6. SoftTest Cause-Effect Graphc...cocvvviimniieininniniiccrrrecneeeececeee e 19-21
Figure 19-7. SoftTest Functional Requirements Report...........ccccccooveeninvcnninncincennrennnn, 19-24
Figure 19-8. SoftTest 2167A Document Templatecccccooeveevvinvnnenrinnnreneenecennne. 19-27
Figure 20-1. SQA:Manager Test Plan for ACTIIIO2PN.........cooienireeeeenrcreneenennen 20-6
Figure 20-2. SQA:Manager Test Specification Report for Test Spec ACTIII02DS........... 20-7
Figure 20-3. SQA:Manager Test Case Report for Test Case INVPRN.............................. 20-8
Figure 20-4. SQA:Manager Test Procedure Report for Procedure CHKRUNS 20-9
Figure 20-5. SQA:Manager Software Items Report..........ccooeireencreennenceneennvnenenrernnns 20-10
Figure 20-6. SQA:Manager Test To0l REPOTt..........ccovieveirveerrenerirnctenreeerenente e e esaenes 20-10
Figure 20-7. SQA:Manager Test Log REPOTt..........ccovreeviinrecmniecieneeneeneeseeneeneesnennes 20-11
Figure 20-8. SQA:Manager Test Case Report for Test Case INVPRN..........cccocevveeeeene 20-12
Figure 20-9. SQA:Manager Problems Table..............ccccevenevennreecrererienierenecreneeeessnenens 20-12
Figure 20-10. SQA:Manager Fixed Problems Ready for ReTest........c.ccecerrvenrcceennnnen. 20-13
Figure 20-11. SQA:Manager Cost of Repair Table.........ccccceeeereeennvcrenrnecerireniecseeeenene 20-13
Figure 20-12. SQA:Manager Cost of TESHNE.........c.ccererreererrenrereenterressneseesesseesessassnssessnes 20-14
Figure 20-13. SQA:Manager Cost of Repair Graph..........ccccoeeeeeeveeereeeerneerennenssneressene 20-15
Figure 20-14. SQA:Manager Cost of Testing Histogram.............ceceeveecrereerecrererreeceennnnen 20-15
Figure 20-15. SQA:Manager Reliability Analysis Table and Graph............ccccceceevrurnneen. 20-16
Figure 20-16. SQA:Manager Failure Intensity Table and Graph.............cccoeeeereenennnee.. 20-17
Figure 20-17. SQA:Manager Plot of Incidents by Symptomccoeecevcereeseererennnenen. 20-18
Figure 20-18. SQA:Manager Plot of Problems by Severityccccocceveerermevernreveerncnnnnen. 20-18
Figure 21-1. SRE Toolkit Generated Reliability Measures..........c.ccoceceerreeerrrenreeeresererenene 214
Figure 21-2. SRE Toolkit Failure vs. Execution Time Plot..........c.ccooveevererreveerirernenenennas 21-5
Figure 21-3. SRE Toolkit Initial Intensity vs. Execution Time Plotcc.cocvvveeneereeneneen. 21-6
Figure 21-4. SRE Toolkit Present Intensity vs. Calendar Time Plot..........ccovveeeeveeenenennne 21-7
Figure 21-5. SRE Toolkit Completion Date vs. Failure Data..............ccoccvruvrereeneereeencrnnnne 21-8
Figure 21-6. SRE Toolkit Testing Resource Usage Parameter Estimation......................... 21-9
Figure 21-7. SRE Toolkit Reliability Demonstration Chart.............cccceveevereereieseevenenene 21-10
Figure 21-8. SRE Toolkit Completion Date vs. Failure Intensity Output......................... 21-11
Figure 21-9. SRE Toolkit Life Cycle Cost and Failure Intensity Objective Plot............. 21-12
Figure 22-1. T Sample SDF ...ttt cscreceessseessessesestesssssesnsssssserennes 22-6
Figure 22-2. T Software Description Verification..........ccceecececeeerenerereneereneeesseseereneseenes 229
Figure 22-3. T Software Description MEtTics...........cccovvevvreercrinrerieneeneeseereresse et esesennas 22-10
Figure 22-4. T Design Rule Verification............ccueeeieieemieeceenecinicecrernsestesesseessenns 22-11
Figure 22-5. T Test CAtAIOZ.......covuvieeeeriinrinneriiieserieseenecceresesaresessseseessosessessseseessesessons 22-13
Figure 22-6. T Sample Generationcccuevruerierrneeecrenrneeneseneeensessesessessesessessssessessence 22-14

xix

Figure 22-7. T Test Case Definitions...........ccoevvcmnierinriiiieniniiieieerinece s 22-17

Figure 23-1. T-PLAN Test Model Functional Condition List Report..............cccccevnninn. 23-6
Figure 23-2. T-PLAN Test Model Sample Print for Input Ref ... 23-7
Figure 23-3. T-PLAN Test Model Input & Output References for Test Spec FIN............ 23-%
Figure 23-4. T-PLAN Test Model No Screen Data Testing for FIN..............c.cccoee. 23-9
Figure 23-5. T-PLAN Test Model Output Print for FIN ... 23-9
Figure 23-6. T-PLAN Test Model Test Specification Information for FIN..................... 23-10
Figure 23-7. T-PLAN Test Dictionary Function, Input, Output Reference Index 23-13
Figure 23-8. T-PLAN Test Dictionary Functions, Inputs, Outputs Used in FIN 23-14
Figure 23-9. T-PLAN Test Dictionary Condition Impact on Data Profiles 23-14
Figure 23-10. T-PLAN Test Dictionary Change Impact for Function MME, Input

EIN, Output FIS.......c.ooiniiiiiiinniiniitsnsrinaer st sesssacsessssencesssssneasennes 23-15
Figure 23-11. T-PLAN Test Dictionary Test Specification Indexcococecenievnnn. 23-15
Figure 23-12. T-PLAN Test Management Service Query Report for SQ 00002............. 23-16
Figure 23-13. T-PLAN Test Management Test Spec/SQ Log for FINc.ccccevenineennne 23-16
Figure 23-14. T-PLAN Test Management Service Query Reports.......c..ccoveevveieeceennnne 23-17
Figure 23-15. T-PLAN Overall Progress for IBS..........ccconvmreiiiiieencreceenee 23-18
Figure 23-16. T-PLAN Test Management Service Query Reports............cccocceerueeceennnn 23-19
Figure 23-17. T-PLAN Test Management REpOrtsccueiviniinnicnninnccccnnecesennens 23-20
Figure 24-1. TBGEN Record File.......c..cceivieininminsnniiintinseiieneneesennneeraeeneeresneseennnns 24-5
Figure 24-2. TBGEN Trace File.........cccccovinnnninininnnnneinicnincnensiseeeseteensecenesesssessenes 24-6
Figure 24-3. TBGEN Generated Log Fileccoovmmvemmiieceiiiicecciecn e 24-7
Figure 24-4. TCMON Profile Execution LiStING........ccccccocineniirunnernccsencrneecraneseenneseenennanes 24-8
Figure 24-5. TCMON Log File........ooovervriniiininniieiniisinnceisesssiscseesenasssesesssnsesesesses 24-9
Figure 24-6. TCMON Coverage SUMMATYccceeeeiiiemsenniesnssisesnssisessnsssscsessessssssssenens 24-10
Figure 25-1. TCAT/Ada Reference Listing for LL_COMPILE................cccecenverereruennee. 25-8
Figure 25-2. TCAT/Ada Instrumentation Statistics for LL_COMPILE............................. 25-9
Figure 25-3. TCAT/Ada Directed Graph for LLFIND from LL_COMPILE................... 25-10
Figure 25-4. TCAT/Ada Segment Coverage Report using testl.lexcccceeeccnveerennn 25-11
Figure 25-5. TCAT/Ada Segment Coverage Report using testl.lex & sample.lex.......... 25-14
Figure 25-6. TCAT-PATH Segment and Node Reference Listing for LL_COMPILE ...25-18
Figure 25-7. TCAT-PATH Instrumentation Statistics for LLFIND...............c.cccceuvuene.... 25-19
Figure 25-8. TCAT-PATH Cyclomatic Complexity of Function LLFIND 25-19
Figure 25-9. TCAT-PATH Segment Count for Each Module in LL_COMPILE............ 25-20
Figure 25-10. TCAT-PATH Digraph of Function LLFIND...........cccocevveeerreereerervrrnencns 25-20
Figure 25-11. TCAT-PATH All Paths for LLFIND.........ccccoconteininnnninierereernrenrreennes 25-21
Figure 25-12. TCAT-PATH Basis Paths for LLFINDccccceceueninnevereetrereeeereneeenes 25-21
Figure 25-13. TCAT-PATH Path Statistics for LLFIND...........c.ccccceevererenreierenrirenenen. 25-21
Figure 25-14. TCAT-PATH Path and Segment Information for LLFIND....................... 25-22
Figure 25-15. TCAT-PATH Coverage Report for BUILDRIGHT using testl.lex.......... 25-23
Figure 25-16. S-TCAT/Ada Call Graph for LL_TOKENS...........cccceoeverrrrerreeeernrererennes 25-24
Figure 25-17. S-TCAT/Ada Call-Pair Coverage using testl.leX.........cccoovreivrerrrmnnennncnc. 25-25
Figure 25-18. S-TCAT/Ada Cali-Pair Coverage using testl.lex Accounting for All

Call-PaiTscoviiririinniersseniseesnesssesssssesesserssssessasssssssesssssssssessssesasesssns 25-27
Figure 25-19. S-TCAT/Ada Call-Pair Coverage using testl.lex & sample.lex................ 25-29

XX

Figure 25-20. TSCOPE Dynamic Display of Coverage on Directed Graph for LLFIND 25-33

Figure 25-21. TSCOPE Dynamic Display of Coverage Accumulation for LLFIND 25-33
Figure 25-22. TDGen Sample Value and Template Filescooeeoiinininnin, 25-34
Figure 25-23. TDGen Table of Sequential Combinations for Initial Files....................... 25-34
Figure 25-24. TDGen Qutput of First Random Execution...........cccoveennininiiininnne, 25-35
Figure 25-25. TDGen Output After 3 Executions with 1st Value File............c.ccccccco.... 25-35
Figure 25-26. TDGen Output After 2 Executions with 2nd Value Filec..... 25-35
Figure 26-1. TST Test Configuration File for Function LLFIND.......cccceoiiiiiennnnni, 26-6
Figure 26-2. TST Parameter Report for Function LLFIND ..., 26-7
Figure 26-3. TST Execution History Report for Function LLFINDccccoerennenna... 26-9
Figure 26-4. TST Execution Summary Report for Function LLFIND................c....... 26-10
Figure 26-5. TST Sample Test Data File for Function LLFIND..........cccconiinncne. 26-11
Figure 26-6. TST Function LLFINDccovvninnnniinniitinensenssesesesesesesesasse s 26-12
Figure 27-1. Test/Cycle Requirements Hierarchy Report........ccoceeveeeienioenieinnicnannne 27-8
Figure 27-2. Test/Cycle Requirement Description Report.........coeveineiereeeiecenesenennnnnne. 27-10
Figure 27-3. Test/Cycle High-Level Validation Matrix Screenccovveeeeeeiinvenennnan, 27-11
Figure 27-4. Test/Cycle Intermediate Level Matrix Screencoeeeeeenseiesnsnsenennnnen. 27-11
Figure 27-5. Test/Cycle Detail Level Matrix Screen...........cccoevvereeeineniennisnssesniessnnnnennen 27-11
Figure 27-6. Test/Cycle Build Description Report.........ccoevivivienernienenreeenreiicecnnnenen, 27-12
Figure 27-7. Test/Cycle Components Description REport...........ooveueevveneinnceeecneiennnnnnnens 27-13
Figure 27-8. Test/Cycle Test Run Description REPOItc.vcvveieenverreemntenieeniainsssncnena, 27-14
Figure 27-9. Test/Cycle Requirements Validation Status Screen...........cococvvvevueccveennncnes 27-15
Figure 27-10. Test/Cycle Test Run Validation Status Screenooeeevvievvniennvenncnnnnn. 27-15
Figure 27-11. Test/Cycle Test Case Description Reportcccvvevveenceeniennecenennncnnes 27-16
Figure 27-12. Test/Cycle Test Case Linkages SCreenccccvcceemevemmrenrmnecnnsenuencnnnens 27-17
Figure 27-13. Test/Cycle Test Case Referenced by Requirement Screen.............c......... 27-17
Figure 27-14. Test/Cycle Test File Description Report..........cccvveierenmnenninicninsenensenseene 27-18
Figure 27-15. Test/Cycle Work Request Description.......c..c.coveinincnmnennennsnciincnannne 27-19
Figure 27-16. Test/Cycle Work Request Log Report........cccoeevnnivinecrnenninnnscininnnenas 27-19
Figure 27-17. Metrics Manager Database Full Report............ccccoevveevivccnncrsnnncnniccnncne, 27-20
Figure 27-18. Metrics Manager Enterprise & MIS Metric Summary Report 27-28
Figure 27-19. Metrics Manager Function Points Productivity vs. Type of Effort............ 27-30
Figure 27-20. Metrics Manager Development Defect Removal Efficiency vs. Size

Of PTOQUCT.....ceiiiiitit ittt teesestnese st e st saassesaaesssssssssnsessonsesannnns 27-31
Figure 27-21. Metrics Manager Development Defect Removal Efficiency vs.Tools

USEA ...ttt sacssssesssa sesssssssesssssesssssssssascaiesesscnsssseas 27-32
Figure 27-22. Metrics Manager Development Unit Cost vs. Size of Product Showing

INAUSHTY Data........cviiiiiiictiirercccente et sn e e seans 27-33
Figure 28-1. ADADL LiStNEcoovriiiiiiiiniineictnceiensnicasssssenaessssnssstencesssesntesesnenensens 28-7
Figure 28-2. ADADL Program Unit Cross Reference Report...........c.ccecerceneencrvenennnnnnee. 28-8
Figure 28-3. ADADL Object Cross Reference Report..........c.cccooeveneemeeccnnnescoriveernnresaennns 28-9
Figure 28-4. ADADL Type Cross Reference Report..........ccoeveevrnerveevncenccneceninesennennenens 28-10
Figure 28-5. ADADL Declaration TT€E.......cccoueureireeierenverrenennrrienseresessassesnesessessesessaesesses 28-11
Figure 28-6. ADADL Invocation TTEeoccovviveriivircenscrnnerenneenenneesearnesesossosesesseassensens 28-12
Figure 28-7. ADADL Additional Cross Reference Reports.........cccccecereevreerecrnnvereennenenne. 28-13

xxi

Figure 28-8. ADADL Complexity Summary Report ..., 28-15

Figure 28-9. ADADL Program Unit ID Report..........cocvvviiiiinininiiiiiinis 28-16
Figure 28-10. ADADL Objects Declared but Not Used Report..........ccoeerienriinnnnnnee, 28-16
Figure 28-11. ADADL Types Declared But Not Used Report...........ccoooviniiiinnn. 2%-16
Figure 28-12. ADADL Program Units Declared But Not Used Report........................... 28-17
Figure 28-13. ADADL Program Units with High Complexity Metrics Report............... 28-18
Figure 28-14. ADADL Error Cross Reference Report..........cccvieviiiiiincniniiinnicncene. 28-18
Figure 28-15. TestGen Test Conditions for Path Testing of LLFIND 28-19
Figure 28-16. TestGen Test Case Effort Report..........ccoveeeniiniiecincncnninncncsenene. 28-21
Figure 28-17. TestGen Unreachable Statement Report for LL_COMPILE..................... 28-22
Figure 28-18. TestGen McCabe Complexity Report for LL_COMPILE......................... 28-23
Figure 28-19. TestGen Test Coverage Summary using testl.1excoccovviniininncnuennnne 28-24
Figure 28-20. TestGen Sub-Program Invocation Count Report using testl.lex............... 28-25
Figure 28-21. TestGen Statement Execution Report using testl.lex for ADVANCE...... 28-26

Figure 28-22. TestGen Branch Path Coverage Analysis using test].lex for ADVANCE 28-27
Figure 28-23. TestGen Structured Testing Path Coverage Analysis using testl.iex

fOr ADVANCE ... iiceeiereneneceeeecerssesesnestsanessosessesnessesnesnsssessassensnns 28-28
Figure 28-24. TestGen Test Coverage Summary using testl.lex & sample.lex............... 28-30
Figure 28-25. QualGen Report EXCEIPt........cccceiiveenveniimeseneninnicsecensntesctscssrseessssanessens 28-31
Figure 28-26. GrafBrowse Flat Invocation Graph of LL_COMPILE 28-34
Figure 28-27. GrafBrowse Declaration Tree of LL_COMPILEcccccoeeevinunnannen.. 28-35
Figure 28-28. GrafBrowse Flat Callby Tree of LLFINDc.c.ccooeeeviniennecenreernineennens 28-36
Figure 28-29. Grafbrowse Browsing LLFIND...........cccceveeiiircennennnenteeenenercruesennesennas 28-37

Xxii

LIST OF TABLES
Table 2-1. Practices Reported in Software Test Practices Survey.........ococeviiiiiinns 2-1
Table 2-2. Practices Reported in Software Measures & Practices Benchmark Survey..2-2
Table 3-1. SDIO Test REQUITEMENLS......c..coomirmieiiniiinrennerinieriereetesseseessis e esaesreeseesseenne 3-2
Table 3-2. PMM-Implied Test ReQUIrements...........cccceceveercrenenenenseneenenrcnecreseesaasnens 3-4
Table 3-3. Software Metrics Plan Implied Test Requirements...........cccceceveeriiievennnennn. 3-6
Table 4-1. Tools Examined in the CRWG and STSC Studies........cccccoceeruevcnrnnevcnnenne 4-2
Table 4-2. Tools Examined in the IDA Studycc.ooovieieecennieeccreecrrecree st 4-3
Table 4-3. Tools Planned for Future EXaminationccccoeoeeeeneneeenennncnrneeensencene 4-4
Table 4-4. CASE-based Testing SUPPOTL.......cccoiririrrereenienreneerersneneseesscsnessessessessessesnenes 4-7
Table 4-5. Ada Development Environment-based Testing Support..............c..cecvnnn... 4-8
Table 5-1. Test Management Capabilities of Examined Toolscccccccceuvrinrerennnnnne 5-1
Table 6-1. Problem Reporting Capabilities of Examined Tools............cccoovrnurennn..... 6-1
Table 7-1. Static Analysis Capabilities of Examined Tools..........ccoccevvveeunrvrenrerivmnnenens 71
Table 7-2. Supported Complexity MEASUIESccceerreerrernenirrniereneesanresenrnsresessensssenees 7-2
Table 8-1. Dynamic Analysis Capabilities of Examined Tools..........ccocecueeurrnenncnne... 8-1
Table 8-2. Structural Coverage Analysis CharaCteristiCs.......c..oceeeeurererereerevrereereeenenees 84
Table 8-3. Test Bed Generation CharaCteristiCscceverrereernnrrreressersrersereessnsseseenes 8-6
Table 10-1. TOOI PrOfIIESc.cceietrneienenricceirereenrenreesasseseeessnassssessssasessensssesssssssessanes 10-2
Table 10-2. SUPPLIEr Profiles.........ccovuieenineninenrinrenesecssessesceseesesesseessesessnnssosessessenses 10-4

xxiii

PART I

° STUDY OVERVIEW

PARTI Introduction

1. INTRODUCTION

1.1 Purpose

This report provides software developers with information that will help them gain an
understanding of the types of software testing tools that are available, the functionality of
these tools, and how they can aid the development and support of Ada software for the Stra-
tegic Defense Initiative (SDI).

1.2 Scope

Tools are available to support a variety of testing tasks at different stages in the software
life cycle. To make best use of available resources, the work described here was initially
limited to the examination of tools that support the static and dynamic analysis needed for
testing Ada code. Code-based testing was selected as being one area where automated sup-
port is critically needed, both to increase software reliability and to reduce development and
support costs. Restriction to the Ada programming language [ANSI/MIL-STD-1983] was
adopted in view of Department of Defense (DoD) Instruction 5000.2 [DoDI 1991]. The
scope of the study was subsequently extended to include test management and problem re-
porting tools. The purpose of this extension is to accommodate DoD’s increasing trend to-
wards the use of software metrics to support the management of software development and
as a basis for continual process improvement.

The report is divided into two parts. Part I starts by setting the scene for the following
discussions by taking a brief look at the current state of practice in software testing. Special
software test requirements imposed by the Strategic Defense Initiative Organization
(SDI10), and how automated test tools could support meeting these requirements, are also
discussed. Part I goes on tc describe how particular tools were selected for examination,
identifies the tools so selected, and outlines the method of examination. The following sec-
tions summarize tool functionality in the areas of test management, problem reporting, stat-
ic analysis, and dynamic analysis. This first part of the report concludes by summarizing the
findings resulting from this work.

Based on the experience gained during their examination, Part II provides a usage-based
description of the tools and example report outputs. This more technical presentation is in-
tended to provide further insight for the potential tool user.

1-1

Introduction PART

This is a follow-on report to IDA Paper-2686 [Youngblut 1991]. The earlier report dis-
cusses the examination of some 10 tools for the static and dynamic analysis of Ada code.
For convenience, those discussions have been updated as appropriate and are included here.

N

® PART! State of Practice

2. STATE OF PRACTICE

® The high cost of software testing has long been recognized by the software community.
In the early 1970s, data collected during development of a number of large software systems
(e.g., SAGE, NTDS, Gemini, Saturn V, and IBM OS/360) revealed that 50% of develop-
ment costs were incurred by software testing [Boehm 19801.! This figure holds true today

® [AFSCP 1987, Korel 1991, Yourdon 1990]. Even with this level of effort, operational soft-
ware still fails. Commercial software typically experiences 3 to 10 failures per thousand line
of code (KLOC) and industrial software experiences 1 to 3 failures per KLOC [Boehm
1988].

® Recent surveys of current testing practices help to explain these figures. The Software
Test Practices Survey [SQE 1990}, conducted at the Seventh International Software Testing
Conference, for example, found that software test practices were weak at the unit testing
level and only slightly better for system and acceptance testing. In fact, when common test-

® ing practices were defined as those which more than 60% of respondents ranked as standard
practice, no common practices for unit testing could be identified. Table 2-1 shows the per-
centage of responses indicating testing process and management practices as standard.

Table 2-1. Practices Reported in Software Test Practices Survey

o
Percentage of rexanses Indicating practices [Unht Test
common or standard [System Test
ptance Test
Process Practices Acceptance Test
Software risks are systematically analyzed. 11} 30| 32
Test cases & ures are formally documented. 25] 521 60
Test are ified before software design. 6] 15} 15
o Test cases & procedures are saved after testing. 20] 58] 54
Formal report of test results is produced. 33] 65 60
Requirements coverage is analyzed or traced. 17 551 54
Code coverage is analyzed or traced. 18} 28} 27
Design coverage is analyzed or traced. 151 32| 38
Formal exit criteria used to specify test completion. 2] 18] 17
Tests are rerun after software changes. 18] 39 38
Test process is systematic and ardized. 39] 70| 65
o Test cases & procedures assigned unique names. 21 55| 54
Management Practices Boldface print
A record of time spent on testing is produced. 14| 42| 39 |indicates common
Cost of testing is measured nndg . 11| 28 | 24 | practice (>60%)
A record of faults and defects found is produced. 26| 68 70
The patterns of faults and defects regularly analyzed. 10 271 24
Defect density is measured. 101 19] 16
o User or customer satisfaction is measured. 17 42] 42
Number of changes or change requests is measured. 8] 16| 16
Test effectiveness and efficiency measured & reported. 91 20| 21
Testers are formally trained. 107 30| 23
The test process is documented in standards manual. 4] 22} 3
o 1. For NASA’s Apollo program, 80% of the total software development effort was incurred by test-
ing [Dunn 1984).
2-1

State of Practice PARTI

Xerox Corporation and Software Quality Engineering conducted a joint survey called
the Software Measures and Practices Benchmark Study [SQE 1991]. The first part of this
work provided a preliminary assessment of typical software practices and measures in use
in indﬁstry. The results of this initial work were used to identify those organizations that
employ the most of what industry generally considers to be good practices. The organiza-
tions selected were AT&T, E.I. DuPont de Nemours, GTE Corporation, IBM, NCR Corpo-
ration, Siemens AG, and Xerox Corporation. Each was asked to pick one or two of their
“best” projects from which to provide data for the survey. Table 2-2 reproduces some of
the resuits. Even though these organizations were selected as ones that most frequently em-
ploy advanced testing practices, very few testing practices were in common use at that time.

Although tools are more frequently used for system and acceptance testing rather than
unit testing, the Software Test Practices Survey found that there were no types of tools that
more than 60% of respondents cited as commonly used. As shown in Figure 2-1 the most
widely used type of tool was only used by 50% of the respondents. Similarly, the Software
Measures and Practices Benchmark Study found only scattered use of tools.

Table 2-2. Practices Reported In Software Measures & Practices Benchmark Survey

Mean scores for practical usage Low
Mo
Process Practices High
Software risks (potential failures) are systematically analyzed. 100§ 1571 1.94
Test planning & specifications are stated in requirements phase. 90 147] 2.14
Unit test plans/specifications are prepared. 1.19] 196] 2.53
Someone other than programmer performs/reviews unit testing, 87| 154| 2.59
Module or program complexity is measured. 46] 1.16] 1.81
Software changes are analyzed for ripple effect and test impact. 147 1 197] 2.3
Unit branch & statement execution coverage is analyzed. 60| 124 149
Unit test results are recorded. 106 1 1.89] 2.71
Tests are cross-referenced to requirements. 1.00 | 165} 2.13
Test plans & specifications are formally reviewed. 191] 221 2.56
Code coverage is analyzed for entire system during system test. 681 151) 2.14
Random testing is used to evaluate reliability. 1.00 | 1.72] 2.26
Tests are systematically saved & reused.) 1.10 | 2.18 | 283 | Bojdface print
Features fixed in previous test cycles systematically retested. 1.70 | 2.21{ 2.67 | indicates common
Management Practices practice (>2.25)
Cost of quality activities is measured and reported. 57 1137}]241
Defects are analyzed to determine cause & when created. 1.00 | 155] 2.02
Defects found during testing are recorded & tracked. 242 | 2.70 | 2.89
Defect analysis & trends used to identify process changes. 100 | 147] 196
Number of defects found after release is measured. 1.62 | 2.62 | 3.00
Number of new defects introduced per “fix” is recorded. 133 | 1.87 1 291
Time to identify & correct defects is measured. 1.50 { 2.30 1 2.91
Test procedures & policies are clearly identified & described. 1.86 | 2.28 | 2.85
Scors Usage

< 1.25 Uncharacteristic
1.251.75 Scattered
1.75-2.25 Significant
>2.25 Accepted

2-2

PARTI State of Practice

100 -
Percentage of —
Common Tool %0]
Use —
80 T
707 5 22 Unit
60 : - System
— Acceptance
50 —
40 —
30 —
- 2
20 Z
10 —] 1% ‘
— 2y & 3 85 7 B
0 - =27 & & & = & :]
g g § E s g g] 'i Tools
g £ 2 =2 T & © 37 3
L] S >, S a £ s
& = g = s 3 = k] <
E a n & @ a & o
S % t 2 5 3 = £
= 2 £t & & E =8
g 3z F ¥ ¥
8] &) :- [

Figure 2-1. Tool Usage Reported in Software Test Practices Survey

Although the results from only two surveys are cited here, there is much data to support
these findings. Similar data is provided in, for example, the survey sponsored by the Mas-
sachusetts Computer Software Council [KPMG 1992].

PART I Test Requirements

3. TEST REQUIREMENTS AFFECTING TOOL USE

This section considers three major drivers that encourage the use of testing tools for the
development of SDI software. The first of these is the current set of SDIO documents that
provides policy and guidance for software development in general. The second driver is the
Software Engineering Institute (SEI) Process Maturity Model (PMM) [Humphrey 1987]
that routinely will be used in the near future to conduct evaluations of SDI contractors’ soft-
ware engineering practices. The final driver considered is the Global Protection Against
Limited Strikes (GPALS) Computer Resources Working Group (CRWG) software metrics

evaluation program.

SDIO requirements are not the only reason to use automated test tools. Indeed, because
of the complexity of detail involved in testing even the simplest program, tools are a pre-
requisite for most forms of static and dynamic analysis. Similarly, the ability to capture, an-
alyze, and present quantitative process measurement data in a meaningful form greatly
facilities test management. Although there is a lack of consis.ent data on the cost effective-
ness of particular testing tools, there can be no doubt that automated tools are able to im-
prove the cost effectiveness of testing. On: test practitioner, for example, cites reductions
in testing time of up to 70%, a 30% increase in overall software development productivity
{Graham 1991].

3.1 Affect of SDIO Software Test Requirements on Tool Use

SDIO encourages the use of automated tools to support testing. Candidate tool classes
identified in the Global Protection Against Limited Strikes (GPALS) Software Standards
[GPALS 1992c], for example, are test case generators, performance analyzers, complexity
analyzers, and regression analysis tools. The use of source code standards checking, formal
verification, and static and dynamic code analysis tools is also discussed. The Trusted Soft-
ware Guide annex to the GPALS Software Standards requires the use of an automated test-
bed for creating, executing, documenting, managing, and analyzing the completeness of all
tests, and for maintaining test documentation. The GPALS Software Quality Program Plan
[GPALS 1992a] requires the use of automated metrics data collection and reporting tools.

Additionally, the SDIO Software Policy [SDIO 1992b] and the SDIO Contract
Requirements Packages (CRPs) Guidelines for Computer Resource Issues [GPALS 1992b}
impose requirements on testing practices that, either directly or indirectly, foster tool use.
These special requirements and their sources are identified in Table 3-1. This table also

3-1

Test Requirements PART I

Table 3-1. SDIO Test Requirements

<
2| | 3
S| = Qo
= g %
Elgl &l el o POSSIBLE TOOL
w
TEST REQUIREMENT g] s g SUPPORT
Slw|lw|a| O
wm|lwlwnlwnnl v
EEEE
ahealeala]ea
n|C|VO|0|O
Continuous process improvement. Use of concurrent engineer- | ¥ N | Problem reporting, reliability
ing practices to provide continuous improvement in software engi- analysis, cost analysis, progress
neering processes and the visible quality of products. monitoring
Quality evaluation. Data collection and reporting of a minimum | ¥ | ¥ N | ¥ | Quality analysis
set of software process, product, and management metrics.
Minimum structural test covenﬁe.))
1) Structural test coverage for CSU/CSCI and regression testing of | ¥ V| Structural coverage analysis
all statement, branches, loops.
ii) Structural coverage and boundary value testing at the unit level, v Structural coverage analysis
demonstration of coverage at integration level.
Test traceability. Traceability of requirements, design, and code to Vi v | Requirements tracking, test
tests and test results. planning
Design and code inspections. Formal inspections for all software ¥ N | Browsing
designs and code products.
Review. Review of CSU tests and results. ViV Progress monitoring
Testable requirements. Demonstration of an objective and feasi- N | Requirements tracking, test
ble test of whether each requirement is met. planning
Functional testing. The process of exercising a system under ViV Test data & testbed generation,
operational conditions to determine that specified functional functional coverage analysis
requirements are implemented correctly.
Reliability measurement. Statistical techniques used to reduce ¥ Problem reporting, reliability
observed software defects to acceptable limits. analysis
Random testing. In addition to other methods for generating test N Test data & testbed generation
input, random input generated to overcome any test bias.
Penetration testing. Penetration tests required as part of establish-) -
ing software trust.
Regression testing. Retest modified software to verify that NV ¥ | Regression & change analysis,
changes have not caused unintended effects and software still requirements tracking, test
meets the requirements. planning
Test prngrrcss tracking. Progress tracked and compared to the ¥ Test planning, cost analysis,
Software Test Plan. progress monitoring, problem
reporting, requirements track-
ing
Static and dynamic code analysis. Complexity, structure, and ¥ Static and dynamic code analy-
style assessment, and checking for language violations, unused sis, test data & testbed genera-
code or data. tion
Source code standards compliance. Code portability and style ¥ Auditing, complexity analysis,
assessment. structure analysis
Test repeatability. The ability to repeat a test with the same inputs N[Test planning & documenta-

and operating conditions to yield the same results.

tion, testbed generation

PARTI Test Requirements

identifies the types of testing tools that can be expected to increase significantly the cost
effectiveness of the associated test activities.

3.2 Affect of the SEI Process Maturity Model on Tool Use

Starting in FY93, SDIO will require evaluation of contractor software engineering ca-
pabilities using the SE1 PMM. This evaluation will be routinely conducted as part of source
selection activities, and yearly during the course of a contract, by an independent team of
evaluators. Contractors will be encouraged to perform annual self-appraisals. The PMM is
used to rank software engineering capabilities as the following:

* Level 1 - Initial. The software process is characterized as ad hoc, and occasionally
even chaotic. Few processes are defined and success depends on individual effort.

* Level 2 - Repeatable. Basic project management processes are established to track
cost, schedule, and functionality. The necessary process discipline is in place to repeat
earlier successes on projects with similar applications.

* Level 3 - Defined. The software process for both management and engineering activ-
ities is documented, standardized, and integrated into an organization-wide software
process. All projects use a documented and approved version of the organization’s
process for developing and maintaining software.

* Level 4 - Managed. Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively understood and
controlled using detailed measures.

* Level 5 - Optimized. Continuous process improvement is enabled by quantitative
feedback from the process and from testing innovative ideas and technologies.

As part of the evaluation, the PMM queries the use of automated requirements trackers, test
data generators, coverage analyzers, complexity analyzers, cross-referencers, and interac-
tive source-level debuggers. The testing-related questions that are asked in determining the
software engineering capability level are listed in Table 3-2. This table identifies the types
of testing tools that could be used to support the identified activities. The PMM also ad-
dresses the use of process and product measures for monitoring the status and quality of
both the developing product and the development process. In this case, data collected in the’
course of testing activities can serve several purposes. In addition to supporting the deter-
mination of the effectiveness of actual testing activities, this data provides valuable insight
into other development activities such as defect prevention, training, and software quality
assurance. Test-related data can also be used in the assessment of the benefits and effec-

Test Requirements PARTI

tiveness of existing and new technology. Test tools can support the collection of much of
this data.

The PMM is currently being revised. The new version, called the Capability Maturity
Model [Paulk 1991], extends the information sought on testing practices, such as the fol-

lowing:
Table 3-2. PMM-Iimplied Test Requirements
® POSSIBLE
>
KEY AREA PMM QUESTIONS 2| TOOL SUPPORT
Are statistics on software code and errors gathered? 2 | Problem reporting,
static analysis
Are code and test errors projected and compared to actuals? 4 | Problem reporting,
test planning
Are profiles maintained of actual versus planned software | 2 | Progress monitoring,
units completing unit testing over time? test planning
Process Metrics Are profiles maintained of actual versus planned software | 2 | Progress monitoring,
units integrated over time? test planning
Is test coverage measured and recorded for each phase of | 4 | Coverage analysis
functional testing?
Are software trouble reports resulting from testing tracked to | 2 | Problem reporting
closure?
Is test progress tracked by deliverable software component | 2 | Progress monitoring,
and compared to the plan?) test planning, cost
analysis
Is error data from code reviews and tests analyzed to deter- | 4 | Problem reporting
mine the likely distribution and characteristics of the errors
remaining in the product?
Data Management | Are analyses of errors conducted to determine their process- | 4 | Problem reporting
& Analysis related causes?
Is a mechanism used for error cause analysis? --
Is software productivity analyzed for major process steps?- 4 | Progress monitoring
Is there a mechanism for assuring that regression testing is -
routinely performed?
Process control Is there a mechanism for ensuring the adequacy of regression | 3 | Change analysis,
testing? coverage analysis
Are formal test case reviews conducted? 3
Are standards applied to the preparation of unit test cases? 3 | DoD document gen-
eration
Documented - - -
Standards & Are coding standards applied to each project? 2 | Auditing
Procedures
Are formal procedures applied to estimating software develop- | 2 | Progress monitoring,
ment schedules/cost? test planning, cost
analysis

34

PART I Test Requirements

« Verification of software requirements, design, and code according to the project’s
defined software process.
« Use of formal criteria to determine readiness for any level of testing.

» Review of test plan, test procedures, and test cases by peers of the developers of the
plan and procedures before they are considered ready for use.

« Appropriate change of the test plan, test procedures, and test cases whenever the allo-
cated requirements, software requirements, software design, or code being tested
changes.

» Determination of the adequacy of testing based on the level of testing performed, the
test strategy selected, and the test coverage to be achieved.

+ Performance of formal system testing of the software, according to the project’s
defined software process, to ensure that the software satisfies the software require-
ments.

» Performance of acceptance testing of the software, according to the project’s defined
software process and approved acceptance test plan, to demonstrate to the customer
and end users that the software satisfies the allocated requirements.

» Maintenance of consistency across the software engineering products, including the
software plans, allocated requirements, software reqmrements specification, software
design, code, test plans, and test procedures.

Here again, test tools can be expected to play an important supporting role.

3.3 Affect of the Software Metrics Program on Tool Use

No set of metrics for software project management has gained widespread acceptance
by software developers. Accordingly, the GPALS CRWG on Software Quality Improve-
ment and Standards (SQI&S) has developed a Software Metrics Evaluation Plan (SMEP)
[SDIO 1992a] designed to evaluate and provide SDIO with recommendations on metrics
and metrics tools that can be implemented SDI-wide. This on-going program will involve
the evaluation of several sets of metrics and metrics tools on a number of different SDI soft-
ware development projects. The first evaluation is expected to proceed through 1993 and
will be conducted on the SDI Level 2 System Simulator (L2SS).

The SMEP considers three functional classes of metrics: management, process, and
product metrics. The metrics chosen for initial evaluation include those identified by the
Army’s Software Test and Evaluation Panel (STEP) [U.S. Army 1992]. Metrics from the
Air Force’s Software Management Indicators [AFSCP 1986] and from Martin Marietta’s
Pro-90 Software Metrics Handbook [Martin Marietta 1991] will be used to estimate com-

Test Requirements PARTI

puter resource use. Table 3-3 identifies specific SMEP metrics and the types of tools that
support their evaluation.

Table 3-3. Software Metrics Plan Implied Test Requirements

CRWG
Evaluated Tool
Support
it METRIC POSSIBLE TOOL SUPPORT »
o 8
AEEHE
vijlmn|<i<|@A
Sizing Cost modeling N
Management Costing, Schedule, Manloading | Cost modeling v
Computer Resource Utilization --
Requirements Analysis Requirements tracking
Nonconformance Reporting Problem reporting v
SDP & Software Standards Auditing
Utilization of Software Tools Tool inventorying
Process Configuration Management Change control
Change Summary Process Problem reporting
Productivity Measures Progress monitoring N
Development Progress Progress monitoring
Cost Cost analysis
Bﬁcmny “Problem reporting v
Maintainability Quality analysis Vi
Cyclomatic Complexity Complexity analysis NN
1/O Statements Quality analysis, static analysis
Product Entry & Exit Points Quality analysis, static analysis)
Volume Complexity analysis v
Portability Quality analysis v
Reliability Reliability analysis ¥
Documentation Document generation

To date, the CRWG has sponsored the examination of the following five tools to assess
their support for the application of the SMEP metrics in the L2SS evaluation [Martin Mari-
etta 1992]:

« Software Architecture, Sizing, and Estimating Tool (SASET). A cost, schedule, and
sizing model that provides software development estimates.

* Software Problem and Change Report (SPCR). Tracks and reports on nonconforming
conditions and the status of closure and corrective actions.

PARTI : Test Requirements

 Analyze. Estimates productivity in terms of the ratio of the number of executable
lines of code to the total lines of source code and collects statistics on source code.

» Ada Measurement and Analysis Tool (ADAMAT). Collects some 150 parameters to
estimate software reliability, maintainability, and portability.

« Software Quality Management System (SQMS). Collects parameters to estimate soft-
ware reliability, complexity, and a quality index.

PARTI Approach & Methods

4. APPROACH AND METHODS

The overall approach taken to this work was to identify suppliers of testing tools, select
tools for examination, and apply the selected tools in the testing of sample pieces of code.
The tools examined to date are all available independently of any particular computer-aided
software engineering (CASE) system or Ada development environment. This section also
summarizes the types of testing support provided by these larger-scale products so that their
testing capabilities can be contrasted with those provided by the independent tools.

4.1 Tool Selection

Nearly four hundred suppliers of over six hundred tools were identified. From this ini-
tial set of suppliers, a short list was prepared of those tools that support static and dynamic
analysis of Ada code, test management, and problem reporting. Information was sought
from the appropriate suppliers. In several cases, suppliers gave in-house demonstrations of
their tools. Additional criteria were then applied to refine the short list to be compatible
with the resources available for tool examination. To ensure that the results apply to the
largest possible audience, it was decided that selected tools should be essentially indepen-
dent of processor architecture. Consequently, tools such as non-intrusive coverage moni-
tors which require special purpose hardware were not considered.

Tool selection also considered work performed by other groups. The GPALS CRWG
has examined and reported on five related tools. Most of these tools are available on VAX
or Sun platforms. The Air Force Software Technology Support Center (STSC) has reported
on several categories of software tools, testing tools being one of these categories [Sittenau-
er 1991]. The role of the STSC is to assist Air Force Software Development and Support
Activities in the selection of technologies that improve the quality of Air Force software
products and increase the productivity of its efforts; the focus is on the long-term develop-
ment and support of Mission Critical Computer Resources (MCCR) software. STSC
looked at test tools that support Ada, assembler, ATLAS, C, Fortran, and Jovial program-
ming languages running on DEC/VAX equipment, HP/Apollo and Sun workstations, or
IBM and Macintosh personal computers (PCs). The STSC 1991 report provides half-page
descriptions of some twenty eight tools, and tool critiques based on hands-on application
for eight of these tools. Table 4-1 identifies the tools examined in the CRWG and STSC
studies. Care was taken not to duplicate this previous work.

4-1

Approach & Methods

PARTI

Table 4-1. Tools Examined in the CRWG and STSC Studies

LANGUAGES TEST
SUPPORTED CAPABILITIES
- |2|E
TOOL $1E|.|2|2
2|2] e
STUDY NAME TOOL SUPPLIER E Y s|<|2
Flx|s|<|=s|2
elol 8T
e gle|s|2 A
RHEHBRHE ElE[2
] £1% g|E| ¥ 8
lolS|E|E)E|E|E| 2] &S
[STSC | Automator qa Direct Technology +{+]+]+]+ v
AutoTester Software Recording Corporation § + [+ [+ | + | + v
Bloodhound | Goldbrick Software +|+]+]+]+ v
Logiscope Verilog, Inc. VN "BE V[
PC Metric SET Laboratories, Inc. N YR v
VAX PCA Digital Equipment Corp. BEHE R E v
VAX SCA Digital Equipment Corp. B EREEE v
Test Manager | Digital Equipment Corp. +[+]+]+]+ v
CRWG ADAMAT Dynamics Research Corp. v v
Analyze Martin Marietta IS v v N
SASET Martin Marietta IS +[+]+]+]+ ¥
SQMS Martin Marietta IS VY YAEA E v
SP/CE Martin Marietta IS + [+]+]+]+ v
+ - Language independent

* - Most VAX supporied languages

Table 4-2 identifies the tools already examined in the IDA study and Table 4-3 identi-
fies several additional tools awaiting examination as part of this ongoing work. In most
cases, this latter group are new tools due to be released late in 1992 or early in 1993. Some
offer unique capabilities that fill identified gaps in testing tool functionality. PARTAMOS,
for example, is expected to provide for reproducible testing of concurrent Ada software.
Others provide capabilities that are, as yet, not commonly available. For example, Ada-
ASSURED and the Ada Quality Toolset will check for conformance of code with the Soft-
ware Productivity Consortium (SPC) Ada style guidelines [SPC 1991] selected by SDIO.
The U.S. Government is sponsoring development of ARC SADCA, and NATO the devel-
opment of the Test Support Toolset of the NATO Ada Programming Support Environment

2. The 1992 update of this report, divided into two reports Test Preparation, Execution, and Anal-
ysis Tools Report [Price 1992a) and Source Code Static Analysis Test Tools Report [Price 1992b),
does not include any tool critiques.

4-2

PARTI

Table 4-2.Tools Examined in the IDA Study

Approach & Methods

LANGUAGES TEST
SUPPORTED CAPABILITIES
2| £ 2|2
S| B £l=
TOOL NAME TOOL SUPPLIER Elg 'é 'E s
glels]|<|=
= s|E : g2
A HEIMEE:
ARMEHEHHEEBE
< ||V |=|OC]M= w | Q|
ADADL Processor Software Systems Design v [N v v
AdaQuest General Research Corp. v ‘BER
AutoFlow-Ada AutoCASE Technology ~N |y N
DDTs QualTrak Corp. + |+ |+]+ 1+
EDSA Array Systems Computing, Inc. v
GrafBrowse Software Systems Design ‘Bl v
LDRA Testbed Program Analysers, Ltd. EBEBRE N |[F NV
Logiscope Verilog, Inc. R EEEEERE viv
MALPAS TA Consultancy Services, Ltd. v IA NIy
Metrics Manager Computer Power Group, Inc. + [+1+]+1+1Y
QES/Manager Quality Engineering Software,Inc. [+ |+ [+ |+ | +
QualGen Software Systems Design CH B v N
S-TCAT Software Research, Inc. ~N Y NiY ‘RER
SQA:Manager Software Quality Astomation + 1+]+]+]+FV]Y
SRE Toolkit Software Quality Engineering + 1+]+ 1+1+0Y
SoftTest Bender & Associates + 1+]+]|+ |+
T Programming Environments, Inc. + 1+ l+fi+]+ N
T-PLAN Software Quality Assurance, Ltd. + 1+ l+1+1+0~TN
TBGEN Testwell Oy N[V N
TCAT Software Research, Inc. YIYINIY]AY)
TCAT-PATH Software Research, Inc. ‘B E Ny v |
TCMON Testwell Oy ‘RN N
TDGen Software Research, Inc. + |+]+]+]+ N
TSCOPE Software Research, Inc. + |+ + |+ N
TST STARS Foundation Repository ¥ NV
Test/Cycle Computer Power Group, Inc. + J+]+]+]+ 0~y
TestGen Software Systems Design v v

(APSE). Both of these toolsets are expected to provide a broad range of static and dynamic testing ca-

pabilities.

4-3

+ - Language independent
F - Future capability

Approach & Methods

PART |

Table 4-3. Tools Planned for Future Examination

LANGUAGES TEST
SUPPORTED CAPABILITIES
roounawz | TOOLpEvELOPER HAkE
alg|l=m|<]| s
= Slegls)® ‘g
Eis]2|2|2]|E g
2 1 E £ § E § | &
<O |V I=]|O)= wia|e
ARC SADCA Optimization Technology, Inc. Y v NV
Ada-ASSURED GrammaTech, Inc. v v
Ada Quality Toolset Marlstone Software Technology, Inc. | v v
Battlemap Analysis Tool McCabe & Associates YRR N N[N
CaseQMS A- 'y ; & Computer Systems, Inc. +)+ 1+ +]+ v
Instrumentation Tool for Ada M.Cabe & Associates N
PARTAMOS 7 Alcatel Austria v v K
QES/Architect Quality Engineering Software, Inc. + [+ 1+]+]+FY
QES/Programmer Quality Engineering Software, Inc. + 1+ l+]+]+ v
QTET QualTrak Corp. +]+]+]+ v v
QUES Software Productivity Solutions, Inc. [¥ N
QualityTEAM Scopus Technologies +{+ [+]|+ 1(+ v
Regquirements Tracer Teledyne Brown Engineering + |+ |+ V+]+0Y
SLICE McCabe & Associates ‘AR ‘B R ‘IR
START McCabe & Associates + 1+) +]+]+ v
SQMS Software Quality Tools Corp. + |+]+]+]+0V]Y
SWEEP Software Productivity Consortium + [+ [+=]+]+0Y

4.2 Method of Examination

+ - Language independent

Each static and dynamic analysis tool was used to test several small Ada programs. The goal of
these initial tool applications was to allow the examiner to gain familiarity with overall tool oper-
ation. Each tool was subsequently applied to the same Ada program. This software was the Ada
Lexical Analyzer Generator program that creates a lexical analyzer or “next-token” procedure for
use in a compiler or other language processing program [Meeson 1989]. It was developed for the
Software Technology for Adaptable, Reliable Systems (STARS) program and consists of several
Ada subprograms with a total of over three thousand lines of code. In the absence of a historical
test database, the test management and problem reporting tools were examined using the sample
test database provided by each supplier.

PARTI Approach & Methods

Generally, suppliers provided their latest tool release for the examination. In a couple
of cases, only demonstration versions were available. In each such case, however, the dem-
onstration version was fully functional and only limited by the number of inputs it could

accept.

4.3 CASE System Support for Software Testing

A recent survey of CASE vendors, performed on behalf of the U.S. Air Force, found
that nearly 25% of the examined products claim explicit support for software testing activ-
ities [Hook 1991]. The goal of incorporating testing support into a CASE system is to pro-
vide easy access to testing tools and so facilitate continual evaluation of evolving software.
This evaluation can be used to ensure timely detection of faults and provide the software
developer with feedback to guide the development process, thus encouraging a better inte-
gration of testing with other software development activities.

Table 4-4 indicates the types of test support provided by current CASE systems. At the
code level, coverage and performance analysis are the most common types of support pro-
vided. These capabilities are similar to those provided by independent test tools and are
sometimes available as stand-alone products. However, it is during earlier stages of soft-
ware development that CASE systems hold the most potential for improving the integration
of testing with other development activities. Several CASE tools provide requirements
traceability, use simulation and, occasionally, executable specifications to indirectly sup-
port testing. Recently, more direct support in terms of test generation, test plan tracking,
and specification analysis based on user-defined rules has become available. Examination
of testing tools that are part of a CASE system is still needed. In particular, the question of
how to achieve the necessary integration of independent and CASE-based testing tools to
provide a comprehensive automated test capability must be addressed.

4.4 Development Environment Support for Software Testing

A previous IDA study identified twenty eight U.S. companies that supply validated Ada
compilers [Hook 1991]. All these vendors provide a minimum set of tools for Ada code de-
velopment including the compiler, editor, debugger, library manager, and run-time envi-
ronment. The Ada language definition allows Ada compilers to provide considerably more
static analysis than is possible for older languages such as Fortran. Capabilities such as type

4-5

Approach & Methods PART I

checking and range checking, for example, are always provided, The other types of testing
support provided vary quite considerably. As shown in Table 4-5, coverage analysis, per-
formance analysis, and cross-referencing are the most common testing capabilities support-
ed.

Some vendors (DEC, IBM, and Verdix) demonstrate a movement towards providing an
integrated development environment that encompasses most phases of the software devel-
opment life cycle. In this case, for the implementation phase, there are tool sets offered with
the compiler. For requirements specification and design, these development environments
support various off-the-shelf CASE systems.

4-6

{001 Juusay oY1 etp - ®
1001 159) Juapuddapul SB PIMIAAIY - «

M sjurensuod Juiwy yim 'sads -oaxg | M ‘ou] ‘satdojouyoa |, uoljiwel 100
(7] M sajru pautjap-1asn £q Sunjoay) "pr] eonewWaIsAg Apurey JSA
..m e MMM MM ‘au] ‘satdojouyoa] aIpe) Jlomureaj
T b M M) BuusawBug umosg ukpaja) 73SVI/SDV.L
= p p aremjjos unjdog 193nydIy/19auiduyg WalsAg
o.M Juiyaayos 19jawered r 4qy &S
%] uone[nwW> 10J
% r uoneIauad vep 153) % '0ads "00xg ‘ouf *x13077-1 aewAelg
a sisAjeue “y1ad 79 suon
M. -Josse yum ‘oads -29xg M s38 Yyouaqyiom s48
a3e1aA00 7 '2ads ‘03X swaysAg uadifau] empuedg youaqylop sAgnN/al
k4 d S 1
MM SUOILEASSE (im ‘sads ‘2axg p swasAg Suruoseay INIJTY
8unyoen ueyd 1sa] > *auj ‘poNOid PopoId
so[na paurjop-1asn £q Jurouasa *ou] ‘uepijog onseB
MM ! ! Ju]
M 02 220 youaqpiomigN “THAOW
3 MM pIEYoR]-Na[MOH youaqiiopm dH
- Buioey) pim oads “s0xg | b ‘U] ‘SWIAISAS BUAIY y3isalog
m uotjesauad ejep iso) 3 oads -ooxg | M| M ‘ou] ‘A3ojouysa], armnyg uorsiaug
g sis[eue Anxsdwo) I8 101813u00) UdIsaq
0 M M SdS BPY JIssED)
M safru pautjap-1asn Aq Surysay) -ouj ‘sonydeIn 10uapy uolels SV
M Ayis1oatup) uolpIe) 4aavo
p ou] ‘sasudiaug OfY O-ony
r "PI] SWAISAS UOSYOR[[FBYDIN | JOTBURUY YOUIQRIOM [dV
3 « | & | umsisse mataa1uadxg M| -oul ‘uBisaqg swayskg aremyog (uansal yum) FSIV
uonesauad ssasord sisAjeue Anxa(dwos ‘vone
. «| & 1591 ‘Surjoayo owreuiqg -1ouad ases 1s9) ‘uonedtjusa onmig | M vsn Jopusp | (sdoosiBo qum) AOV/IVSY
(o) =3) 4] @ (®
SIRERIEIRIE 5 5|2
EEEI=IE|IDIEE @
2 |= o2 = £ |?
s{"IFIE ae % o
cE| EFERIE -3 s
% | Eir|sl* & g -
siz| 2B 3 ad£y yioddng ad£J, 1oddng S 13
m e e W g JOANIA JVN 3SVD
23| BIEEEE W
gl 2] EIFE
sl Bl |#
= 2
4a0d NODISAd NOILVOIIDAdS
uoddng Bupisa) paseq-3Sv9 ‘v-v eiqel
) ® ® o o ®) ° °)

PARTI

Approach & Methods

o ® | ® ® ¢ ® ® ®
A Jajyjoly [eonsnels
S UOHBISYIOM SCIV A ‘Wuawuoaaug wawdo[aaa(] epy ung ‘diopy xiprap
S IS MM Apwej zuanad L
M)A M IS SOIyajaL yosajal
M M Apuiey waysAs uonepdwo) SWA epY "ou] ‘satiojeIOqe] UEMR],
r p waysAS wawdolaad(] BpY ung SWIISASOISIN Ung
p M wawuonaug juawdo|aad(epy NODIOS s
A A A AL
S M Aqiurej awuonAug [euone Yy reuoney
p)uswuonaug wawdojaaa(q epy aremijos "y
I epY uBiplidjy ‘epy uad() | swaisAg aremyjog ueiplapy
A wawuonaug wawdoeaa(g epy swasg sandwo) SJTN
IS IS M uatiuonaug 153] % wawdo]aaa(aemyos epy D] ‘diop sopdwoy) auran
» MIABPY ‘WdwuonAug Juawdojaaa(] epy SHURULIANU]
p 0009/8PV X1V
M p MM Apurej oLe/PY WHI WdI
M Yau3gnjos/epy dH
M p wawuonAug aremyjos Sutwweidold spyxy prexoed MoK
M p wawuonaug voddng SutwuresSoly epy surH SURH
p waysAS 1wawdojaAa(] Bpy WRID}O] *au] ‘suIsAS-g
M M MM Apwej 13g [00] SOVA fpuonsw] Haqa
» NINER 3snd 03@
r p WEXVA d10)y wawdinbg pudiq
2 I I 1BULIOJBPY ‘JIIXEPY ‘AUNLBPY ‘3qOijepy
p M A wawuonaug wawdo[aaa(] ARMYOS BpY ‘ouf ‘sAsTy
p p waisAg wawdojaaag epvy/X4 swaisAg 1andwo)) iy
A adoogepy 195]00] Juawdo]aad(] arem)jos epy HO313v
—
S|e|S|®|C = Qleciylo w
AR BBRBHE
mwammmmummmmyam
m [Qo. w 2. m [m. ~ o ~Jd w A
3 m = 2 8 M. = W >lg 2 W > m
23] |512]e gld|el3le|E SLINAOYd (1STL) HIHLO HOANTA
w. m. .W] e M 13 S, ¥ LNTWNOUIANT INFWNJOTIATA ‘
= FALAN z(5]5|%|°
& > ® g
B 3
g .
..Aﬁ g
&

uoddng Bujisal peseq-juswuoljAug uswdoisaeq BpyY "S-b 8iqeL

4-8

PARTI Test Management

5. TEST MANAGEMENT

This section identifies key capabilities of the examined tools in terms of the support
provided for test management. It is intended to provide a quick overview of the types of
automated support available in each area and insight into how this support can be used to
facilitate software testing.

Previously Table 4-2 identified six tools as providing test management capabilities and
one other, LDRA Testbed, as currently being extended to provide these capabilities in the
near future. The functionality of these tools is further detailed in Table 5-1.

Table 5-1. Test Management Capabllities of Examined Tools

. . Regs Progress
Test Planning & Documentation Map Monitoring
8
2|8 T
HHEMERRERERP
HRNE ggg Bl |E|B|E o
TOOL NAME &l |& AL
elel (E121El%| 218|523 AHEREE
5|2 u:[-klos—.aagg_ %“Umu-=
(= ele(g|8lE HAEHEIHERHEEHE
55 3:53:%3‘¢==5=E'\E<>~
=E,&6=wég§:‘”‘s"ﬂcz.°§
555’22"5&’:5:0& ozg-gelgﬂ
&|o ElE|IR|2]|E E?ovg“omé‘;ﬂag
HAHEAHHEEEHHHEHEHEED:
SlEIE(E(&E (2S5 =I&(S|E|2(5|E|2(E|S|2
"LDRA Testbed F
Metrics Manager v
QES/Manager v vV
SQA:Manager YR E AR EARBEREREAE v NV
SRE Toolkit _ NIy
T-PLAN NIVIV]A VIVIY NIV N
Test/Cycle AR ARRE Y FINI~NI~N]Y]Y N|F

F - Future capability
Two additional tools, SoftTest and T, are also discussed. Although not properly classed

as test management tools, both of these provide some support for requirements mapping
and progress monitoring. '

5-1

Test Management PART I

5.1 Test Planning and Documentation

Test planning is a prerequisite to effective management of test activities. It provides the
base against which required test activities can be scheduled, test resources can be estimated,
and the progress of test activities can be tracked.

Of the examined tools, QES/Manager, SQA:Manager, T-PLAN, and Test/Cycle pro-
vide explicit support for test planning, though they take somewhat different approaches.
QES/Manager and SQA:Manager incorporate a predefined test model that defines the rela-
tionship among test objects such as documents, test cases, and products. In the case of
SQA:Manager this model follows the Institute for Electrical and Electronics Engineers
(IEEE) standard test model [ANSY/IEEE 1983]. The QES/Manager test model groups test
cases into test drivers that specify an execution sequence for those test cases. Test/Cycle
defines the types of permissible test objects, but allows the user to define the links between
these. It is worth noting that software builds are one of Test/Cycles object types, allowing
this tool to explicitly support incremental software development. T-PLAN provides the
most flexibility. It requires a user to start by defining the underlying test model, although
an in-house developed test methodology can be used as the source of the test model if de-
sired.

With the necessary model established, these tools capture similar information for test
cases and groupings of these test cases. They differ in the other types of information cap-
tured. Most significantly, only T-PLAN and Test/Cycle explicitly capture requirements and
trace these to testing data (see Section 5.2), and only SQA:Manager, T-PLAN, and Test/
Cycle explicitly document a test plan. All the tools except QES/Manager do, however, trace
test data to the software items under test. (A capability offered by QES/Manager, unique
among these tools, is the ability to simulate the test data.) Examples of other information
that can be captured by some of these tools include a test schedule and an inventory of test
tools. All these tools provide user-tailorable templates to support data entry.

The tools also differ in their reporting on the contents of the test library. QES/Manager
requires the user to define all report formats, and Test/Cycle provides a range of predefined
report formats. SQA:Manager and T-PLAN support both predefined and user-defined re-
port formats. In addition to the available IEEE standards, SQA:Manager supports applica-
ble DoD standards DoD-STD-2167A and DoD-STD-2168, and military standard MIL-
STD-480.

5-2

ey

w

PARTI Test Management

5.2 Requirements Mapping

The ability to trace the relationship between software requirements and test items pro-
vides valuable insight into the completeness and effectiveness of both test planning and test
execution. It is also a prerequisite for the change analysis that determines the potential
scope of effect of a proposed requirements change. The ability to provide this support is
one of the major differences between the tools in this category. It is available with T-PLAN
and Test/Cycle.

Test/Cycle uses requirements validation matrices to cross-reference requirements
against software builds, test runs, and test cases. These matrices can be examined to ensure
that all requirements are appropriately covered, providing quick insight into test planning
completeness. T-PLAN links requirements to test cases via test conditions that can be
grouped to reflect, for example, valid/invalid categories, system releases or versions. It also
reports on the test items affected by a change to a test requirement, in addition to the change
analysis provided for other types of test items. .

SoftTest and T provide requirements traceability in a different way. Here a require-
ments specification is used to guide the generation of test cases. Hence, test cases are auto-
matically linked to defined functional requirements. Both tools provide matrices that give
a quick visual guide to the cross-referencing between functional requirements and test cas-
es.

5.3 Test Progress Monitoring

Test progress monitoring is important for effective management of test activities. By
tracking actual progress against planned progress, managers can get an early indication of
potential schedule slips to support timely decision making. The early identification of qual-
ity shortfalls is another piece of valuable information. The data collected during test
progress monitoring can also be used to assess various overall software development indi-
cators and quality indicators (see, for example, [AFSCP 86, AFSCP 87]). Progress moni-
toring is largely based on a log of testing activities. Data is entered into the test log
manually or, in some cases, can be imported from a test execution tool.

SQA:Manager and T-PLAN capture similar information for the test log. Using this in-
formation, SQA:Manager reports on the status of each test case, that is, the number of tests
passed, failed, and aborted, and the number of incidents raised. T-PLAN reports whether

5-3

Test Management PARTI

each test procedure has been tested, date of last test, and whether a re-test is required, to-
gether with details on the conduct of the individual tests performed. Using the schedule in-
formation entered for each test specification, T-PLAN also compares estimated and actual
levels of effort to determine the outstanding effort and report on the percentage completion.
This reporting is available for test planning, testing, regression testing and review activities.

Test/Cycle reports on the validation status of requirements, builds, and test runs in
terms of the percentage of test cases passed. It provides this for each leaf requirement or
requirement subtree in its requirements hierarchy. Additional reports summarize the overall
status of requirements, builds, and test cases, whereas a test log report provides detailed in-
formation on the status of individual test cases. '

SoftTest and T report on the requirements coverage achieved through testing to date.
SoftTest reports requirements coverage in terms of the number of functional variations test-
ed with respect to those testable; this requires the user to manually enter the results of test
case execution. T also maps user-supplied test results to requirements to report on test ad-
equacy with respect to requirements coverage. It provides a test comprehensiveness mea-
sure that, at the user’s choice, combines requirements, input/output, and structural cover-
age.

Reliability analysis is also used to monitor test progress against a stated objective. A
failure intensity objective, for example, specifies the expected number of software failures
per unit of time, whereas a reliability objective specifies the probability of failure-free op-
eration. By looking at the occurrence of software failures during testing activities, it is pos-
sible to estimate the number of defects remaining in a piece of software and determine (with
confidence intervals) the additional time or resources needed to reach the goal objective.
By predicting the reliability of software after modification, these measures can also help to
time the performance of maintenance activities, for example, the addition of new features.
Under the proper conditions, reliability measures can be used to help determine the effec-
tiveness of particular software engineering practices, or the effects of process improve-
ments.

Many different reliability models have been proposed. The two most common are Mu-
sa’s basic execution-time model and the Musa-Okumoto logarithmic Poisson execution-
time model [Musa 1987]. Both models characterizes failures as a nonhomogeneous Poisson
distribution. SRE Toolkit supports reliability analysis using both of Musa’s models, where-
as SQA:Manager uses the Musa-Okumoto model. Both tools provide failure intensity and
reliability reports that include the amount of additional testing time needed to meet a tar-

5-4

PARTI Test Management

geted reliability, and an estimation of how many more problems are likely to be found dur-
ing that additional testing. They both support cost analysis. SQA:Manager relates the hours
spent in test activities and in problem resolution to cost rates in a cost base to report the cost
of these activities. Using data on the cost of failure identification and correction, and the
cost of operational failure, SRE Toolkit maps total life cycle, system test, and operational
life costs against a specified failure intensity objective.

SRE Toolkit supports a number of additional features. For example, the user can spec-
ify a failure time adjustment to take account of incremental delivery of software to the sys-
tem test process and a testing compression factor to specify the ratio of field to test
execution time. The toolkit can be instructed to interpret individual failure entries as inde-
pendent failure events or to perform grouped data analysis. A suite of prototype programs
provides further information such as summary statistics for each recording period, esti-
mates of resource usage calendar time parameters from resource usage data, and plots of
completion date for testing and life cycle costs versus failure intensity objective.

In addition to that discussed here, information on the status of identified problems (see
Section 6) and the coverage achieved during dynamic testing (see Section 8.2) also provide
insight into the status of testing activities. '

5.4 Productivity Analysis

Productivity data, like quality data, can be used to monitor the efficiency of the software
development process. It supports the identification of those instances where process im-
provements are needed, and the effectiveness of process changes. While several tools sup-
port the collection and analysis of quality data, Metrics Manager is the only examined tool
that provides productivity analysis. As such, it looks at a user-defined Management Infor-
mation System (MIS) function, collecting data on a monthly, quarterly, or annual basis to
monitor the performance of the organization and track the impact of new methods, organi-
zational structures, and technologies. Metrics Manager is supported by an industry database
that allows comparison of organizational data against industry statistics.

3-5

PARTI Problem Reporting

6. PROBLEM REPORTING

The primary purpose behind problem reporting is to ensure that all identified problems
are addressed. The data inherent in this activity serves several additional purposes. It pro-
vides a valuable insight into both the software status and the progress of development and
test activities. Additionally, it provides much of the data needed to drive continuous process
improvement activities.

Four tools that support problem reporting were examined. One of these, DDTs, address-
es this function exclusively. For SQA:Manager, T-PLAN, and Test/Cycle, problem report-
ing is only one of the types of support provided for software testing. Consequently, it is not
surprising that there are several significant differences between these two types of support.
The capabilities of the tools are summarized in Table 6-1.

Table 6-1. Problem Reporting Capabiliities of Examined Tools

Report . . Stod. | Distrib.
T Details Captured Reporting Con. | Archit.
K) 2 2
5lgle 1RE £l |3
TOOL =8 > | B & =]
nave | [81E1E] (£ =§§§§§ SEBEHE
HHEEHRHERHHHEHEHBEBHEHE
éiégggégggggﬁééagzgéé
AHHAHEHHHEHEHHBHEREEE
s 9 im - { =~
HHHEEHUEEEEEOHEBEEHHEE
DDTs YENTAY M ER R ARAEERRA R EEEARARERAERAERERE]
SQA:Manager | ¥ AEARAEARRRBEBE v PR IE
T-PLAN vy v[v]3 v
Test/Cycle ' BB K v 31V v

6.1 Report Types and Details Captured

The ability to distinguish among different types of problems, and perform separate
tracking and reporting for each type, is very useful in monitoring the software development
progress and planning further development activities. The common types of problem re-
ports are incident reports, defect reports, and change requests. Only Test/Cycle has all these
problem types, collectively called work requests, built in. Although in its basic form DDTs

6-1

Problem Reporting PART |

only distinguishes between defects and change requests, it can be customized to also accept
incident reports. SQA:Manager distinguishes between incidents and defects. T-PLAN
tracks and reports a single problem type, called service queries.

By and large, all the tools capture similar details about identified problems. Data entry
is guided by user-tailorable templates. DDTs allows the provision of supplemental infor-
mation that is kept separately, but linked to a defect report. This additional information can
be used, for example, to include the data files needed to reproduce a problem. The test
item(s) to which problem reports are linked affects the type of tracking that can be per-
formed. SQA:Manager and T-PLAN link them to, respectively, test cases and test specifi-
cations. DDTs and Test/Cycle link problem reports to software items.

DDTs provides a good example of the additional power provided by tools that focus ex-
clusively on problem reporting. Here problems have a specified life cycle defined in terms
of states and state transitions. The system administrator is permitted to modify this life cy-
cle.

6.2 Import Capability

A flexible import facility is a valuable feature. It allows data generated using other
tools to be incorporated in a common problem database. This is useful, for example, when
different problem reporting tools are used, perhaps to cater for different development orga-
nizations or host machines. DDTs and SQA:Manager provide this capability.

6.3 Reporting Capabilities

T-PLAN, Test/Cycle, and DDTs provide predefined report formats. In the case of
DDTs, these reports conform to DoD-STD-2167A and the proposed IEEE standard classi-
fication for software errors, faults, and failures [IEEE 1987]. For T-PLAN the available sta-
tistical reports analyze the total numbers of defects, or queries, by classification. Frequency
of defects and defect resolution is also provided, as well as the percentage complete and
outstanding effort required to complete approved changes. Test/Cycle reports provide only
work request descriptions and a work request log. DDTs also allows a user to define his
own report formats, as does SQA:Manager. In these cases, a number of predefined report
filters and sorting keys are provided to support reporting based on any problem character-
istic.

PARTI Problem Reporting

SQA:Manager and Test/Cycle report on the costs associated with defect detection and
correction. Of the examined tools, only DDTs provides a capability for automatic weekly
reporting on problems.

In addition to its reporting facilities, DDTs provides advanced search and query func-
tions.

6.4 Standards Conformance

SDIO requires the reporting and tracking of identified problems but does not specify
how this requirement should be met. Some additional guidance is given in DoD-STD-
2167 A. This standard requires, for example, that problems are classified by category (soft-
ware, documentation, or design problem) and are assigned one of five levels of priority. It
also requires analysis of defect trends and the identification of any additional problems in-
troduced by a problem fix.

The examined tools vary in their ability to meet these requirements. As shown in Table
6-1, only DDTs and SQA:Manager provide five priority levels as a default option, al-
though, for the other tools, the user can generally modify the input template to allow a dif-
ferent set of levels. The ability to record problem classifications is highly variable.
SQA:Manager and T-PLAN, for example, allow user-defined categories, whereas DDTs
accepts free-form text for this information. None of the tools provides explicit support for
recording the introduction of new problems as a results of a problem fix. Several pieces of
information can support the analysis of defect trends. Problem classification and details on
when a problem was inserted, detected, and the first opportunity for its detection, for ex-
ample, are all useful. DDTs, SQA:Manager, and Test/Cycle capture at least part of this in-
formation.

6.5 Distributed Architecture

The dedicated problem reporting tool, DDTs, is network based. This tool uses electron-
ic mail to provide automatic notification of changes in problem status and to support remote
problem entry. It also supports multiple projects. DDTs also provides access controls and
various other administrative capabilities. These additional capabilitics range from checking
and repairing the database to template definition.

PARTI Static Analysis

7. STATIC ANALYSIS

Static analysis is used to determine the presence or absence of particular, limited classes
of errors, to produce certain kinds of software documentation, and to assess various charac-
teristics of software quality. Unlike dynamic analysis, static analysis can sometimes be per-
formed on incomplete or partly development products and does not necessitate costly test
environments. It cannot, however, replace dynamic analysis, although it can be used to
guide and focus dynamic testing. Previously Table 4-2 identified fourteen tools as support-
ing static analysis. The functions provided by these tools are summarized in Table 7-1.

Table 7-1. Static Analysis Capabillities of Examined Tools

Control Flow
Analysis

TOOL NAME

Information Flow Analysis
Standards Conf. Analysis
Quality Analysis -

n| <] Cross-Reference Analysis
Specification Compliance

Data Flow Analysis
Structure Analysis
Path Analysis
Code Statistics
Flowgraph Generation
Call Graph Generation
Symbolic Evaluation
<} Pretty Printing

Browsing

<} Complexity Analysis

" ADADL Processor
AdaQuest
AutoFlow-Ada N
EDSA N N
GrafBrowse N v
v
N

e 7]

e}

<]
<]

[LDRA Testbed
Logiscope

I MALPAS vV
QualGen N
S-TCAT v N
TCAT
TCAT-PATH | N v

[TST 7 v y
TestGen v v

<] <]

<
<] 2]
2] 2] <]
2]]
<] 2] <

2| <]

F - Future capability

7.1 Complexity Analysis

Complexity measures are put to various test-related uses. McCabe has developed a
method, called Structured Testing, that uses cyclomatic complexity to guide the selection

7-1

Static Analysis PARTI

of a minimum set of required paths to test [McCabe 1982]. Complexity measures are also
used to estimate the number of defects present in a piece of software and to identify pieces
of code that are potentially defective.

Models for estimating program complexity have been based on various characteristics
of software structure and semantics. The best-known set of complexity measures are all ap-
plied at the program unit level. They are McCabe’s cyclomatic complexity metrics [McCabe
1976] and Halstead’s software science metrics [Halstead 1977]. Whereas cyclomatic com-
plexity is control oriented, the Halstead metrics are text oriented. As well as variations on
each of these measures, there are many other program-level measures. In contrast, relatively
few measures for assessing design-level complexity have been proposed. Perhaps the most
common design-level measures are those developed by Mohanty that are based on a call
graph [Mohanty 1976], and basic subtrees, a variation on cyclomatic complexity. Measures
for assessing requirements complexity are similarly scarce and not supported by any of the
examined tools. Table 7-2 identifies the different types of complexity measures that are pro-
vided.

Table 7-2. Supported Complexity Measures

Unit Level 3‘:3
_1)
15| - ' 5
:%::OEAEQ s g«g-’:‘g
TOOL NAME ~|®|E|2]|=I|C]|E Blzlz]|E |8
AR HEHEHEE AN
§E‘%UVE£= ?ae.mg.m
2= |g|E[R[E|RIZIBIS|IE|E13|2(F
2lels|sls|5|E(5|8|8|8|z]l2|e]s
-t | w | w | =]
HHEHHEEHHRHHEEEHE
ADADL Processor N
LDRA Testbed B ERE R EBRERERER
Logiscope N v |
MALPAS
TCAT-PATH N v [V BB B A
TestGen v 3

7-2

PARTI A Static Analysis

Twenty years of theoretical and empirical evaluations have failed to produce consistent,
hard evidence of the accuracy of particular measures or on the respective value of alterna-
tive measures. Consequently, these measures should be used as indicators, rather than ab-
solute measures of software properties.

7.2 Data Flow Analysis

Data flow analysis is based on consideration of the sequences of events that occur along
the various paths through a program. It is used to detect data flow anomalies, of which three
types are commonly recognized: (1) a variable whose value is undefined is referenced, (2)
a defined variable is redefined before it is referenced, or (3) a defined variable is undefined
before it is referenced. While the first of these indicates an actual program defect, the latter
two types of anomaly may indicate questionable variable usage rather than specific defects.
Since the analysis technique assumes that all paths through the program are feasible, some
reported anomalies may be superfluous. Data flow analysis also can be used to categorize
procedure parameters as referenced only, defined only, both defined and referenced, or not
used. '

LDRA Testbed, MALPAS, and EDSA support static data flow analysis. LDRA Test-
bed performs weak data flow analysis to identify data flow anomalies of the types men-
tioned above. It also analyzes procedures calls across procedure boundaries to report on
procedure parameter usage. MALPAS refines the classification of data flow anomalies. For
example, a data variable that is redefined before it is referenced may be classified as either
an instance where data is written twice without an intervening read, or as data being written
with no subsequent access on a given path. Given a list of procedure input and output pa-
rameters, MALPAS compares these with the classes of data to produce a table of possible
errors. EDSA uses interactive data flow analysis to facilitate program browsing.

7.3 Control Flow Analysis

Control flow analysis is a process of examining a program structure and identifying ma-
jor features such as entry and exit points, loops, unreachable code, and paths through a pro-
gram. This information can be used to determine program complexity and to aid in planning
a dynamic test strategy. It can help to decide on strategies for further analysis, for example,
to identify where it might be beneficial to partition the code to reduce the number of paths

7-3

Static Analysis PARTI

and, hence, facilitate semantic analysis. The results of control flow analysis can also be
used to prepare a diagrammatic representation of the program structure that can aid a user
in documenting and understanding a piece of software.

Control flow analysis is provided by the majority of tools that support static analysis.
MALPAS, TestGen, LDRA Testbed, and TCAT family all report on unreachable paths.
These may be generated as a result of program syntax, for example, as a result of end if
statements, or the position of a return statement. Even though they do not necessarily imply
an defect, the occurrence of unreachable paths should be checked. Some of the examined
tools go farther. LDRA Testbed, for example, also reports on unreachable branches and
other structural units.

Several of the tools use control flow analysis to generate a graphical representation of
a program’s structure as a logical flow chart or directed graph. This allows visual inspection
of program structure and complexity, and can facilitate program understanding at the unit
level. AutoFlow-Ada, LDRA Testbed, Logiscope, TCAT, and TCAT-PATH all generate
fairly sophisticated graphical representations of a program’s structure. AutoFlow-Ada, in
particular, provides a user with considerable flexibility in generating a high-quality graph-
ical flow chart. TestGen uses textual facilities to produce a more primitive graph represen-
tation. Although MALPAS does not directly produce a directed graph, its list of nodes, with
identification of successor and predecessor nodes, helps a user to draw this graph. Graphi-
cal representation of the calling relationship between program units also facilitates program
understanding. GrafBrowse, LDRA Testbed, Logiscope, and S-TCAT generate call graphs
or call trees.

The identification of paths through a program is useful for estimating the resources
needed for dynamic analysis and then guiding this testing. AdaQuest, LDRA Testbed, Lo-
giscope, MALPAS, TCAT-PATH, TST, and TestGen all provide this capability. Even
more useful, LDRA Testbed, Logiscope, and TestGen explicitly identify the values of log-
ical conditions necessary to cause particular paths to be followed. Logiscope, TCAT,
TCAT-PATH, and S-TCAT report on various code statistics. These statistics range from
measures such as the number of each type of operator and operand occurring in the soft-
ware, to measures of the average, minimum, and maximum path length. EDSA provides
interactive control flow analysis to facilitate browsing along program paths.

MALPAS, LDRA Testbed, and Logiscope perform structure analysis to verify a pro-
gram’s conformance to the principles of structured programming. Here LDRA Testbed
matches templates of acceptable structures with the directed graph of a program on a mod-

7-4

PARTI Static Analysis

ule by module basis. Matching structures are successively collapsed to a singie noae until
either a single node is left, indicating a structured program, or an irreducible state, indicat-
ing an unstructured program. MALPAS and Logiscope perform a similar reduction to eval-
uate the structure.

7.4 Information Flow Analysis

Information flow analysis is used to examine program variable interdependencies. This
helps to isolate inadvertent or unwanted dependencies, to indicate how a program can be
broken down into subprograms, and to identify the scope of program changes. For security
applications, it can be used to aid the identification of spurious or unknown code. Addition-
ally, it supports dynamic testing by identifying which inputs need to be exercised to affect
which outputs.

Both LDRA Testbed and MALPAS provide this capability. Currently LDRA Testbed
is limited to identifying backward dependencies on a procedure by procedure basis and
characterizes variables as strongly or weakly dependent. Future versions of LDRA Testbed
will include forward dependencies to identify variables that can be affected by a particular
input variable. It will also support information flow dependencé assertions to allow com-
parison of expected dependencies with actual dependencies.

MALPAS identifies all of a program’s inputs and examines each executable path to
identify dependencies for each output variable. These dependencies include the input vari-
ables, constants, and conditional statements on which it depends. It reports on program unit
inputs and outputs, which may be more than those passed as parameters. MALPAS also
identifies redundant statements.

7.5 Standards Conformance Analysis

Auditors are used to check the conformance of a program to a set of standards. For SDI
software, the SPC Ada Quality and Style: Guidelines for Professional Programmers [SPC
1991] defines the required standards. Although none of the tools reported here supports
these guidelines, ADAMAT discussed in the CRWG study does. Two new tools, Ada-AS-
SURED and the Ada Quality Toolset, are advertised as providing this support.

7-5

Static Analysis PART!

LDRA Testbed checks conformance to a set of standards that are of interest to the pro-
gramming community; this includes much of the Safe Ada Subset. Individual standards can
be disabled and the user can weight particular standards or specify acceptance limits, where
appropriate. TST reports on conformance to a set of portability standards.

7.6 Quality Analysis

As already mentioned, several tools report on particular quality characteristics such as
complexity and compliance with standards. There are, however, many other quality char-
acteristics that provide insight into, for example, code maintainability and portability.

One of the examined tools, Logiscope, employs the Rome Air Development Center
(RADC) quality metrics model to allow user-defined quality measurement at three levels
of abstraction [RADC 1983]. At the lowest level of the model, the user can defined upper
and lower bounds for a predefined set of primitive metrics. Logiscope distinguishes be-
tween unit-level metrics and architectural metrics, reporting on both. The user can then
specify algorithms to weight and combine the primitive metrics into composite metrics.
These composite metrics are, in turn, used to define quality criteria that allow classifying
components as, for example, accepted or rejected, based on their computed quality values.

QualGen analyses both design and code complexity and currently interfaces with Lotus
1-2-3 for quality reporting. It provides some 200 primitive metrics which, via Lotus, can be
combined into user-defined higher level measures. Software Systems Design, the develop-
er of QualGen, is currently mapping the correspondence of QualGen metrics to the SPC
Ada style guide.

7.7 Cross-Reference Analysis

The information acquired from cross-referencing program entities serves many purpos-
es. Perhaps one of the most important of these is identifying the scope of a program change
or aiding in the diagnosis of a software failure.

The ADADL Processor provides extensive cross-referencing capabilities. It reports on
the cross-referencing between program units, objects, and types. It also reports on the oc-
currence of with and pragma statements; the occurrence of interrupts, exceptions, and ge-
neric instantiations; and the usage of program unit renaming. LDRA Testbed cross-

7-6

PARTI Static Analysis

references all data items and classifies them as global, local, or parameter and also cross-
references procedure usage. Through its browsing capabilities, EDSA provides interactive
cross-referencing of data items and Ada objects.

7.8 Browsing

A browser facilitates program understanding by allowing the user to create and present
different views of the software. This may include views that show the same piece of soft-
ware at different stages of development and views that omit some information in order to
focus on other details. A browser also may provide the user with the ability to follow the
control flow or data flow in browsing through code. These capabilities may be used for sev-
eral purposes, for example, to aid in reviewing a program or in diagnosing the cause of a
software failure.

EDSA focuses on browsing source code at the unit level; it allows browsing forward or
backward via data flow or control flow. The user can construct views that suppress or omit
irrelevant code details to help him to focus on the concern at hand. Special annotations are
available to keep track of the progress of formal code verification. GrafBrowse chiefly op-
erates at the integration level. Here the user can move through graphical invocation hierar-
chies (or declaration or call-by hierarchies), pulling up the relevant pieces of code as
required. The TCAT family of coverage analyzers also allows moving between graphical
depictions of program and module structure and the associated source code.

~ Although not examined in the course of this work, the new version of Logiscope also
supports source code browsing.

7.9 Symbolic Evaluation

This type of static semantic analysis provides a more complete examination of a pro-
gram’s operation. Instead of actual input data, symbols such as variable names are used to
simulate program execution. This allows the reporting of the mathematical relationships
between inputs and outputs for each semantically possible path. It has three primary uses.
The relationships can be compared against a program specification to check for consisten-
cy. The identified path condition, together with the expression detailing the set or range of
input data which causes this path to be executed, supports test data generation. Finally, the

7-7

Static Analysis PART!

relationships can aid in determination of the expected output for a set of test data. Only
MALPAS provides this very useful capability.

7.10 Specification Compliance Analysis

Specification compliance analysis takes semantic analysis a step further by automati-
cally comparing a program against its formal specification to identify deviations. This type
of analysis is very powerful, but requires additional work on the behalf of the user.

Here again, MALPAS was the only examined tool that provides this capability. It re-
quires program specification details to be embedded in its intermediate language. (These
details may already be available if a formal specification language such as Z, VDM, or OBJ
is being used in the development effort.) The output of the compliance analyzer is a set of
threat statements that, if the program does not meet the specification, presents the relation-
ships between inputs that cause a deviation to occur.

7.11 Pretty Printing

A useful documentation capability, pretty printing is provided by the ADADL Proces-
sor, AutoFlow-Ada, EDSA, LDRA Testbed, and TST.

7-8

PARTI Dynamic Analysis

8. DYNAMIC ANALYSIS

This section reports on the capabilities provided by the examined tools for dynamic
analysis where software is evaluated based on its behavior during execution. Dynamic anal-
ysis is the primary method for validating and verifying software. Additionally, it is the
source of much of the information used in monitoring testing progress and software quality.
Traditionally an unstructured and labor-intensive activity, dynamic analysis is a significant
cost driver. This study examined the dynamic analysis capabilities of fourteen tools. Table
8-1 identifies the particular functionality provided by each.

Table 8-1. Dynamic Analysis Capabilities of Examined Tools

Coverage Prof- Test Data
Analysis iling Generation 9
) g 2 Els
AP CAR] g =&
SN 2l2la 8 ZI° IS
TOOLNAME |8 |5 |& IR K 3..5:
ol - = Cle]|2|3 El=lzlx < @ |z |8
g|B|E|E E|1s|<|® g 2lalgle|e
AR R El2|1B|»|21B|5|E|E|E|= E|E
tlE|E el8]ele|s|=|BlE|E|E|S
AHHHEHHHAHHEHHEHAHE
z|1Z|18|2|5|E|E|18|&|Z2|2|&|5|8|&8]a
'AdaQuest F 1~ o) F
LDRA Testbed vy F R v CR K
Logiscope N Y N N NV
SoftTest Kl
S-TCAT | N
L_f v v
TBGEN v
| TCAT N v
TCAT-PATH N N N
"TCMON v v ~
TST NV N v
TDGen Y
TSCOPE! v v
TestGen v v v

1. Used in conjunction with TCAT, TCAT-PATH, or S-TCAT to animate coverage resulits.
F - Future capability

8.1 Assertion Analysis

An assertion is a logical expression specifying a program state that must exist, or a set
of conditions that program variables must satisfy, at a particular point during program ex-
ecution. Assertion analysis is used to determine whether program execution is proceeding

8-1

Dynamic Analysis PARTI

as intended. In some cases, it may be desirable to leave assertions permanently in the code
to provide a self-checking capability. When present in code, even if commented out, asser-
tions can provide valuable documentation of intent.

Of the examined tools, only LDRA Testbed currently supports dynamic assertion anal-
ysis. Assertions are embedded in Ada comments and can be used to (1) specify pre- and
post-conditions for a section of code, (2) check whether inputs satisfy pre-determined rang-
es, and (3) check whether loop and array indices are within bounds. Should any assertion
fail, a user-tailorable failure handling routine is executed. Assertion checking can be
switched on or off, allowing assertions to remain permanently in the code.

8.2 Coverage Analysis

Coverage analysis is the process of determining whether particular parts of a program
have been exercised. Its importance is illustrated by academic studies and the experience
of the software testing industry that have shown that the average testing group that does not
use a coverage aﬂalyzer exercises only 50% of the logical program structure. As much as
half the code is untested and therefore many errors may go undetected at the time of release.
By identifying those parts of a program that have not yet been executed, a coverage analyz-
er can help to ensure that all code is exercised, thus increasing confidence in correct soft-
ware operation. By measuring the coverage achieved during execution with particular
set(s) of test data, these tools also provide a quantitative measure of test completeness.
Some tools also aid in determining the test data needed to increase the coverage. Although
coverage analyzers do not directly measure software correctness, they are valuable tools for
guiding the testing process and monitoring its progress.

There are two basic types of coverage analyzers. Intrusive analyzers instrument code
with special statements, called probes, that record the execution of a particular structural
program element. The addition of extra code in the program incurs both a size and timing
overhead. The alternative, non-intrusive analyzers, requires special hardware and is not ad-
dressed in this report.

8.2.1 Structural Coverage Analysis

Several levels of structural test coverage have been proposed. The basic levels for unit
testing are statement, branch, and path coverage which require, respectively, each state-

8-2

PART I Dynamic Analysis

ment, branch, or path to be executed at least once. They impose increasingly stringent lev-
els of testing with statement coverage being the weakest and path coverage the strongest.
Since path coverage can be difficult to achieve, various additional levels that lie between
branch and path coverage have been proposed. The best known of these additional levels
are McCabe’s Structured Testing and Linear Code Sequence and Jumps (LCSAJs) [Hen-
nell 1976].

Although unit-level measures can be applied during integration and system testing, they
do not provide the additional information that is pertinent at these levels. During integration
testing, for example, a measure of the extent to which the relationships between calling and
called units has been executed is useful. Functional measures provide a more appropriate
measure of test coverage for system testing (see Section 8.2.3).

Table 8-2 summarizes the structural coverage analysis features of the examined tools.
As shown in this table, the examined tools vary considerably in the support they provide.
The requirements for a test driver to execute the instrumented program is one of these dif-
ferences. LDRA Testbed and TCMON automatically generate this test driver, as does
TestGen under certain circumstances. The generated test drivers also differ. For example,
TCMON provides a command-driven test driver that allows the user to explicitly control
the handling of generated trace files. Where necessary, both LDRA Testbed and TCMON
allow special actions so that this interface can be omitted. There are other significant dif-
ferences. For example, LDRA Testbed provides different handling of trace data to support
host/target testing. It also separates out the data collected from a concurrent program to al-
low separate reporting for each task.

8.2.2 Data Flow Coverage Analysis

Data flow coverage has been proposed as another measure of test data adequacy. While
the traditional structural coverage testing approach is based on the concept that all of the
code must be executed to have confidence in its correct operation, data flow testing is based
on the concept that all of the program variables must be exercised.

While there are several tools that provide this capability for C programs, production
quality tools for data flow testing of Ada code are not yet available. The data flow testing
capability of LDRA Testbed, however, is currently under beta testing.

Dynamic Analysis PARTI

Table 8-2. Structural Coverage Analysis Characteristics

Unit-Level Coverage Reporting g
L | = <z E
@ ® g%g"g% J'E’-':' 5:3
& %l o ;‘_Egz poll - S|1E8|5
% &|E| Sletz|s|E Et..g&*
TOOL NAME SEESE'%ESS%%?Q-@-EE%?
Llz]lz|Q]e &E|le| S @ 2 "'-§
HEHRAHEHEHHEERAEAEIEE
AR HEHEHBHHEHH G HA R EE:
glelx|BlClals| S| 2IE|lElE 2| B2 g
S|IBlOlS|& AR I EHEHEHBEIEE
slalS|o|S|&|2|E|<|<c|=[E[B|E|Z|S]S
[~ AdaQuest) N) 0
LDRA Testbed o N v MEIE v
Logiscope ' RER K v v R v
S-TCAT N |y NV v
TCAT v v v M
[TCAT-PATH Kl v
“TCMON v N v R EREBERE v
TSCOPE! v v ~
TestGen A K| NIV N v v

1. Used in conjunction with TCAT, TCAT-PATH, or S-TCAT to animate coverage results.

8.2.3 Functional Coverage Analysis

Functional coverage, which may also be called requirements coverage, provides a mea-
sure of the extent to which tests have caused execution of the functions that the software is
required to perform. Unlike structural tests, functional tests can determine problems such
as the absence of needed code.

Two of the examined tools assess the functional coverage of tests. SoftTest provides a
measure of test adequacy in terms of the number of tested functional variations with respect
to the number of those testable. T provides a measure of test adequacy based on require-
ments coverage using user specified pass/fail results. An additional test comprehensiveness
measure considers requirements coverage, input domain coverage, output range coverage
and, optionally, structural coverage, where each factor can be user-weighted.

84

PARTI Dynamic Analysis

8.3 Profiling

Profiling provides a trace of the flow of control during software execution. This infor-
mation can aid in locating the cause of a failure and the position of the associated defect.
Of the examined tools, both LDRA Testbed and TST provides this capability as an optional
feature. In the case of LDRA Testbed, however, the Testbed may override the user request
if the resulting display exceeds a preset limit.

In general, the majority of computing time is incurred by only a few program segments.
This may be because these segments are called frequently, are computationally intensive,
or both. When a program needs to be optimized, therefore, it is more efficient to start by
identifying where the majority of computing time is spent so that the optimization effort
can be appropriately focused. Information on the number of times particular program seg-
ments are executed can aid this determination. The coverage analysis tools all give the
number of times examined program elements are executed, some additionally identify the
number of times each program unit is invoked.

8.4 Timing Analysis

Timing analysis serves several purposes. These range from supporting the validation of
software requirements that impose specific timing constraints on software functions to
identifying particular program units that consume a significant proportion of computing
time.

AdaQuest and TCMON provide timing analysis. Both offer the flexibility of user-spec-
ified placement of timers, and measurement using either clock or wall time. TCMON ad-
ditionally allows a user to request automatic timer instrumentation at the program unit
level. This tool reports on the placement of timers (and any counters used for structural cov-
erage analysis) to provide information that can be used to estimate the influence of instru-
mentation statements on measured time.

8.5 Test Bed Generation

Unit and integration testing require the ability to invoke the appropriate modules, pass-
ing necessary inputs and capturing the actual outputs so that they can be compared against
expected outputs. Integration testing may proceed in either a top-down or bottom-up man-

8-5

Dynamic Analysis PART |

ner. In the first case, testing starts with the most abstract, or high-level modules and requires
the use of stubs to represent those modules called by the module under test. In bottom-up
testing, the most detailed, or lower-level, modules are tested first. Here test drivers are re-
quired to simulate the modules that invoke the modules under test. Development of such
test drivers and stubs can be complex and greatly facilitated by automated support. In ad-
dition to eliminating the need for much manual labor, automatic generation also promotes
a standardized testing environment.

LDRA Testbed, TCMON, and TestGen all generate the test drivers needed for execu-
tion of an instrumented program. These are, however, very limited drivers primarily intend-
ed to handle the trace files used to collect coverage details. Of the examined tools, TBGEN
and TST are the only ones that provide true test bed generation, and only TBGEN supports
stub generation. Table 8-3 summarizes the test bed generation characteristics ~“ these two
tools.

Table 8-3. Test Bed Generation Characteristics

Command .

_§-§ L e Record Keeping

=))

2 1m =

m o

HREIHEHE gl |3

TOOLNAME |Z|E|&8|c|8|2|E 2 g
CI1Z12|S1E(E(8 ¥l |2

gz?‘ﬁa“eg - N 177 &

clg|E|= Ll (s = elEle]

Sl1Elzlels]2]z 2I8|E8|E|E

TERBHHUEEHEHHE

':38:586&3&@%98

Q||| =R |RI=m|E|n]w

TBGEN N EBREBREBREBEREREREREREREREREI

TST D) v v

8.6 Test Data Generation Support

Dynamic analysis requires software to be executed with a set of test data. The resulting
outputs are then captured and compared with the outputs expected for the given input data.
The traditionally manual and labor-intensive method of preparing test data has typically
limited the extent of testing that is performed. Although the available tools do not totally
replace the human effort required, they can make a substantial reduction to the amount of
human labor needed.

PARTI Dynamic Analysis

As mentioned above, dynamic analysis requires comparing expected results against ac-
tual results to determine the success or failure of a test. Determining expected results is an-
other traditionally manual and difficult task. Research into tools, called oracles, to
automate this task has been ongoing for many years. As yet, however, symbolic evaluators
(see Section 7.9) come the closest to supporting this capability.

8.6.1 Structural Test Data Generation

During testing, there are occasions where it is necessary to determine the test data that
will cause a specific branch or path to be executed. This occurs, for example, when it is nec-
essary to attain a specified level of structural coverage and existing test data has not exe-
cuted some structural elements.

Support for this activity is available at two levels. AdaQuest and TCAT explicitly iden-
tify the program segments that comprise particular program branches and paths. LDRA
Testbed, Logiscope, TCAT-PATH, and TestGen provide the same information and, addi-
tionally, explicitly identify the conditions required to cause each structural element to be
executed.

8.6.2 Functional Test Data Generation

Functional tests can be derived from a requirements specifications using three catego-
ries of methods: (1) algorithmic techniques such as cause-effect graphing, equivalence
class partitioning, and boundary value analysis; (2) heuristic techniques including fault di-
rected testing and the traditional error guessing; and (3) random techniques that employ
random generation of test data.

T supports all these techniques. Additionally, it is capable of incremental test data gen-
eration, that is, tests can be generated for software changes only. T is the only examined
tool that produces test data values ready for immediate use in testing.

SoftTest supports cause-effect graphing to compile a database of input conditions for
each unique function. The user then works from these conditions to determine the necessary
test data. In those cases where identified functions are not directly testable, for example,
because results produced by one function may be obscured by other functions, SoftTest
identifies intermediate results that, if observable, would enable otherwise obscured func-
tions to be tested.

Dynamic Analysis PARTI

8.6.3 Parameter Test Data Generation

Thorough test coverage at the integration level requires that each subprogram be exe-
cuted over a range of parameter values. Of the examined tools, only TST provides automat-
ed generation of test data for certain types of subprogram parameters. This generation
occurs in one of two forms. The user can specify that all possible values for a parameter be
generated (or first and last values for floating point numbers). Alternatively, the user can
request that these values are divided into a number of partitions and that the first, middle,
and last values from each partition be selected.

8.6.4 Grammar-based Test Data Generation

In those cases when the test data is simply structured, and this structure is amenable to
description, grammar-based test data generation allows rapid, automated generation of
large amounts of test data. This capability is particularly useful in random testing.

TDGen provides this functionality. Test data is generated according to location-specific
data, uniformly distributed data, or value-factored data. TDGen can generate data random-
ly, sequentially, or according to a user specification.

8.7 Test Data Analysis

Two types of test data analysis are considered here. In the first case, test data sets are
analyzed to identify which test data sets execute which lines of code. When particular lines
of code are changed, this information shows which test data sets are affected by the change
and must be rerun. The second type of test data analysis detects and reports on redundant
test data sets. This identifies test data sets that are essentially equivalent in effect and, there-
fore, can be eliminated to reduce testing cost without affecting test effectiveness.

LDRA Testbed is the only identified tool that supports these capabilities. The analyses
are performed on data collected during structural coverage analysis.

8.8 Dynamic Graph Generation

A visual representation of the execution flow of a program can aid in understanding that
program and diagnosing the cause of failures. LDRA Testbed and Logiscope provide this

8-8

PARTI Dynamic Analysis

facility at both the unit and integration levels. TSCOPE uses the outputs of TCAT or
TCAT-PATH to animate the execution coverage on a directed graph; and the output of S-
TCAT can be used to animate coverage on a call tree representation of the program under

test.

8-9

PARTI Findings

9. FINDINGS

This study examined a number of software testing tools to the extent necessary to gain
a feel for their capabilities. However, none of the tools was examined in great depth. Only
tools supporting test management, problem reporting, and static and dynamic analysis of
Ada code were considered. Categories of tools such as regression analyzers and emulators
were ignored. Additionally, some promising tools that may fill some of the identified func-
tional gaps are still awaiting examination.

9.1 Status of Available Tools

Reviews of testing practices and tool usage reveal extremely poor exploitation of avail-
able testing tool support. In the last ten years software developers have placed much focus
on software development tools and there has been an explosion in the availability of CASE
systems and other types of development environments. Only in the last few years, b wever,
has much attention been paid to testing tools. These tools are now starting to comz > mar-
ket in increasing numbers. Even so, available evidence suggests that they are seldom used.

As the number of available testing tools has increased, some trends are emerging. Most
noticeably, there is an increased focus on test management and a movement towards cus-
tomer-oriented measures of software quality. On the technical side, there is a movement to-
wards graphical user interfaces using windows. There is, however, no evidence of
increased standardization in terms of testing functionality. Even within one category, no
single tool provides all desirable functionality, and different tools support different groups
of functions. These functional differences require a potential user to perform tool compar-
isons with caution and to select a tool very carefully.

The following findings relate to the potential for the use of testing tools in the develop-
ment and support of SDI software.

+ Test management. Test management tools offer critically needed support for test
planning and test progress monitoring. This category of test tool is perhaps the latest
to come to market. The capabilities provided for capturing test plans, test procedures,
and test cases are generally similar. Capabilities for capturing software requirements,
tracing these to particular tests, and supporting change impact analysis, however, vary
significantly. With the exception of reliability analysis tools, which are becoming
more common, progress monitoring is seldom available and primitive. Similarly, only
one tool that supports cost reporting was identified and the analysis performed is also

9-1

Findings PARTI

primitive. Nevertheless, the ability of these tools to manage a collection of test infor-
mation is very valuable and, even though its analysis could be improved, the data
available from this analysis is urgently needed to support the management and docu-
mentation of test activities.

» Problem reporting. In addition to their primary use in tracking identified software
problems and managing problem resolution, problem reporting tools offer support for
test management. They provide information on the status and quality of software
products; in particular, they capture the data needed for software reliability modeling.
This data can also provide valuable insights into the status and quality of the software
development processes themselves, and so support continuous process improvement.

Problem reporting tools fall into two classes. The network-based class of tools are in-
tended for use on multiple, geographically dispersed projects. They offer specific
support for customer submission of problem reports and provide automatic notifica-
tion of changes in problem status. Those tools that provided problem reporting as one
part of test management capabilities run on a stand-alone personal computer but cap-
ture much of the same types of problem information and provide similar analyses of
problem data. There are several problem reporting tools that could be brought into im-
mediate use, although some thought should be given to defining a standardized set of
problem data to be captured across all SDI software development efforts.

+ Static analysis. Available static analysis tools are essentially limited to facilitating
program understanding and assessing characteristics of software quality. They pro-
vide some minimal support for guiding dynamic testing. Static analysis requires little
in the way of test environment set up and a minimum of human intervention. It can
detect the presence or absence of certain, limited types of defects and allows these
defects to be detected reliably and early in the testing process. The types of defects
traditionally found by static analysis tools, however, are now routinely checked for
by Ada compilers. Currently, one of the main values of static analysis tools is in sup-
porting an understanding of software and guiding dynamic testing. Quality analysis
is a particular type of static analysis where assessment of a set of predefined quality
characteristics can be used to provide early indication of general software quality and
the identification of potential problem areas.3

In the types of tools examined, complexity analysis and control flow analysis are the
most common static analysis functions supported. A couple of examples of data flow
analysis tools have appeared and are expected to become more common in the future.
Two types of tools to aid a user in understanding and documenting a piece of code are
available: graph generators and browsers. Flow graph and call graph generations are

3. The role of quality analysis is discussed extensively in the GPALS Software Quality Program Plan
{GPALS 1992a].

9-2

PART I Findings

quite common, although they vary greatly in the quality of the representations used to
present these graphs. A few browsers are currently available and these are expected
to become more common over the next few years. This study and the CRWG’s study
of quality analysis tools have, between them, identified several tools that check con-
formance of code with a set of project standards. One of these, ADAMAT, checks for
conformance with the SPC Ada style guidelines. Two new tools that also support the
SPC standards have recently been identified. More advanced types of static analysis,
such as symbolic evaluation, are uncommon.

» Dynamic analysis. Although many needed dynamic analysis capabilities are infre-
quently available, tools are available that offer considerable support for dynamic test-
ing to increase confidence in correct software operation. Dynamic analysis is the
principle method used for software validation and verification. Here automated sup-
port for the preparation of a test bed, generation of test data, and analysis of test
results is needed. Tools that provide this functionality will decrease the cost of testing
by increasing the productivity of the human tester and increase software quality by
supporting such activities as test data adequacy assessment.

Structural coverage analyzers and profilers are the most common dynamic analysis
tools and are widely available on a range of operating platforms. The structural cov-
erage analyzers generally focus on statement and branch coverage, that is, relatively
low coverage measures. Support for path coverage analysis and structural coverage
at the integration level is less frequently available.

Support for other types of dynamic analysis is also infrequently available. Only two
of the examined tools provide timing analysis. Only two tools offer test driver gener-
ation for bottom-up testing, and only one of these also generates the stubs needed for
top-down testing. Few tools support test data generation for structural or random test-
ing, although two tools that support the generation of functional test data from a re-
quirements specification have been introduced. Assertion-testing is a relatively new
capability that is, as yet, only provided by one tool.

Tools of similar types vary widely in the capabilities they provide and in characteristics

such as tailorability and robustness. In general, the examined tools require little sophistica-

tion on the part of the user and are supported by good documentation. Some actively guide

a user through necessary tasks, keep a record of test activities, and take extra steps to relieve

the user of repetitive tasks. In general, however, the tools employ primitive user interfaces

that could benefit from the application of human factors engineering. In several cases, the

need to refer to separate listings to identify objects referenced in reports complicated tool

use. There were instances where different tools gave different results when performing the

same function, for example, calculating cyclomatic complexity. Moreover, some of the

9-3

Findings PARTI

tools contained faults. While most failures were trivial, others rendered a tool unusable un-
til fixed by the supplier. In three cases, major failures occurred when using the tool on sam-
ple software supplied by the supplier. Consequently, prospective tool users should carefully
consider a tool’s usage history and the types of support options provided by the tool sup-
plier,

9.2 Significant Deficiencies

Available testing tools offer significant opportunities for increasing software quality
and reducing development and support costs. Even so, there are a number of problems with
these tools and a lack of needed functionality that may handicap SDI software testing. The
following problems are of particular concern.

*» There is a lack of support for testing concurrent Ada software. The vast majority
of current testing techniques are intended for testing sequential code. Concurrent soft-
ware, however, introduces special concerns. The inherent indeterminism of concur-
rent programs means that two executions of the same software with the same inputs
can produce different behaviors. This lack of reproducibility handicaps, for example,
determining the cause of a failure and retesting a modified program. Concurrent pro-
grams can also contain a new class of faults, called synchronization faults. Additional
tests are needed to check for existence of these faults. Testing techniques addressing
these issues are appearing, along with some prototype tools, such as AdaTDC being
sponsored by the National Science Foundation. One commercial tool that is expected
to support concurrent re-execution within the next year is PARTAMOS, under devel-
opment by Alcatel Austria. Meanwhile, the majority of the commercial Ada-based
static and dynamic analyzers are capable of recognizing all the concurrent Ada lan-
guage features, but not fully acting on them.

» There is a need for increased tool integration to provide more complete coverage
of testing activities. The majority of tools provide support for a specific, limited set
of testing activities. No single tool, or supplier toolset, provides all desirable function-
ality. While tools that support different types of activities can generally be used
together, simply applying them independently in sequence is usually not the most
cost-effective approach. It can incur unnecessary duplication of both human and com-
puter work and may require additional steps to make the output of one tool acceptable
to another. It also requires users to gain familiarity with a number of different user
interfaces, as well as requiring system administrators to support a number of indepen-
dent tools. Moreover, true functional integration requires some common, underlying
model of the software development process model. For example, a test log automati-

9-4

T T T T

PARTI Findings

cally captured by a test bed during test execution activities should be the same log that
a test management tools uses in monitoring test progress. This type of integration
would greatly increase the power of available tools and their ease of use.

« There is a need for integration of testing tools into CASE systems to provide
improved feedback into development activities. While some CASE systems do
provide support for code level testing, this support is generally less extensive than that
provided by stand-alone testing tools. At the same time, CASE tools are providing
more support for testing activities during early development phases than stand-alone
tools. A more careful look at the testing capabilities of current CASE systems is
needed, together with an evaluation as to which, and how, independent tools should
be integrated with them to provide a comprehensive test environment. Here again,
functional integration into a CASE requires that test processes and products are them-
selves integrated into the underlying software development process model. These
issues have yet to be addressed.

There is a lack of data on the cost effectiveness of particular test techniques and tools
that can be used to encourage and guide their use. Although there have been many studies
into the comparative value of certain test techniques, there is a lack of data on the practical
costs and benefits of particular testing techniques, and the tools that support those tech-
niques. This information is needed to determine, for a given set of circumstances, the most
appropriate techniques and tools to apply, the order in which to apply them, and the extent
of that use. It is also needed during planning activities, to support the estimation of needed
testing resources, and in monitoring test progress. The data captured in test logs and prob-
lem reports can be used for this purpose, imposing a minimal data collection burden on soft-
ware developers. Where this data is maintained automatically, it will be a simple task to
forward it to a central site for analysis, such as the Level 2 System Simulator (L2SS) soft-
ware metrics database.

A number of promising testing techniques have been proposed in the last decade that
have failed to progress beyond prototype status. One example of this is the software fault
tree analysis used for error cause and effect analysis in support of risk management. The
Anna toolset is an example of a suite of prototype tools for assertion-based testing of Ada
code. Further development of such techniques and supporting tools could start to fill some
of the gaps in needed testing capabilities.

Additionally, there are needed automated test capabilities that are provided for other
languages but not available for Ada. Examples of capabilities available for other languages
include error seeding as another measure of test data adequacy; support for test coverage

9-5

Findings PART |

analysis of kernel, daemon, and library code in addition to application code; and critical
path analysis. Similarly, while several tools supporting data flow testing of C code are
available, only one tool supplier with plans to provide data flow testing of Ada code has
been identified. Here again, further tool development could start to fill some of the gaps in
needed testing capabilities.

9-6

e e

& e

)

PART II

TOOL EXAMINATION REPORTS

PARTII Introduction

10. INTRODUCTION

This part of the report describes the selected tools in terms of their usage. Tools are
grouped by supplier and the report details the operating environment and the functionality
provided. Where applicable, price information, accurate at the time of examination, is also
included. Each description is supported with observations on ease of use, documentation
and user support, and Ada restrictions. Problems encountered during the examinations pro-
vided insight into the reliability and robustness of each tool. Each description is accompa-
nied by sample outputs.

Table 10-1 summarizes the details given for each tool. It also identifies available bridg-
es between testing tools and CASE systems. Table 10-2 presents relevant supplier data.

10-1

PART Il

Introduction

o o o @ o o o o o
‘smopuip
10J 159], 1JOsoInp
auunyisa]/y
‘1531 -A "0Iisa)
1090Y:yDS
‘eb J0jpWOINY
‘gD UAsaLonvi W » plooszs | nooi<] 1€ i86l 1531)J0§
R DJld| sieuuo) paugaq p p M p] 668 | nooz< | 11°E {0661 njjoo], S|
1090y VOS| W stauaauodl MMM A M M se68 | nooi< | 07 os6l| 1988usiN:VOS
W smo d OlMIMIMIA M ooo'vs | so1> | 1T |8861 uapendy
1auyary/s30| W $13}13AU0D stoppauo)] fMJd]p rlooszs | nos< | zz Jie61] sedsuspysad)
Youaqyop safeuejy 103(01d apAONSIL| N 1108V d[p r jose'vis] soe< | zoz [ess1] o9sump somap]
R M p 000'09$] nos< | 1's [os6l SVdTVIN]
Wwodiuaf)
‘sSHYJu
‘jod ydunsysog
aueld yoeyg v._dacow .._uu_uu:: .ng
‘youaquog dH ‘asndxeq g | ‘a1mosg ‘11osv 110SV I MMIMIML Jooovisinooos<] zE fss6l adoosio
- JI0MWEI] ‘123U 1dussisod
-18ug wass ‘dLS 109se NZogL| W | ‘sweuuoj paugaq] sieunoy paugagf A A JOIM M LALLM LN [000TIS] SOOP< |108YIVL6T] PAQISAL 55.&
W| 10dH 1diwsisod MIMIAIAERL LN JoOS'SS | SO1> JTTT 1661 asmoigyeing
$20S 'sJ¥ W MMAMMPMM]IM]osLES] no1> | 0T J1661 vsad]
$20S ‘SO¥ "youaquos dH ETLRE e} e I TN E MM 000'9$ | sooi< | 91T (6861 sLadf
wdinsisod ‘Old
mI'May ol “19dH ISV d d{p d p | 0s6'68 {n000'>] Z0'1 [z661 Mmooy
Homawrey F§VO o) M M oos'9s | ne> | 11 1661 153n0RpY)]
W (o} A 000'ss | sooz< | 3es ¥861] 00id 1@vavi
Jm = = - T 5 DMMW..P.HPWMN[JM.I 2 B |
> T 5| $ £ BUERRBFEEE 5| 8 |62
< & 5 a 2 -4H g SEIR| B | § | B =
e = g m - &3 Elg| = 3 a | ®
5 g 3, g g alzle SEl 7| g 1512
3 s |5 g B OEISE Bl 2| § |5 |%
4 3 s & z [EIER g m. & lawvn 1001
3 3 e B | °
2
SI0 |dwgdel
STOOL YAHLO OL SAUNI'T SOLLSILVLS TO00L
INFWNOUIANT DNILVIAIO

§9]1§01d 001" }-01 8iqEeL

@
=

—

10-3

reuondo - O
dnosg se pjos - q USAUD PUBLIIOD pue NUIA - § sAg - S
nnu 351003 3uiuren Kep-¢ 10j 33U - , UIAUP prewwo) -) SIaS() - N
.M.w feuotiewIu] HAJ Aq pAleNJew UOISIIA - . 9AUD NUSW - W yuowdojaaap sopun Anpiqede)) - 4
=
T | uomumal gis 01e43190xg W ol [olrMIMIMIMIMTJ009'YS 0000 I<] T2 |V861 ua0isa
& YyouaqyIoM Xwony3y ‘SYH
£ | 1a8eumpy 10aloq *apohpy| 108vuspy somapy| W | ‘dudsisoq ‘[1DSY MM Mloos'es | soi< | zoe Jos6! AONSIY
W pp p 'A0D £< 0T J6861 1SL
+¥ogjoo] SV 1-0ad N30€l} O o) * pIpJoocs| soe< | Tz Joset NOWO.L
»X0gjoo] 3SVJ 1-0ad| NOWOL ‘viall o Ofp{Mlelprlpr]p]os82s] SOE< | 1€ 9861 N3OE.L
H1vd-1lvOl
'LVOL-S 'LVOL| W p S p M |006vsinoosz<] T1]6861 3d00sy
g o] {ofp p p 00s$ | noos- | z€ Josel U3
JSN4 230 'Y2uaqyos dH 3doosl| g p ofp p MM |q006'v8]Nn00S'T<] €1 |L861 IVOL-§
asN4 234 "YPuaqos dH 3d0osl| € ol [o]) p MM [006'vS[n00ST<| 8 8861 HIVd-LVOL
3snd 0dd ‘Yduaqos dH 3doosl| 8 o}l {o]|) M MM [006'v8 N 000T<) €1 9861 1voll
smo] smo]
= 8b Jojewoiny| W ‘asvepdial asveaedial |prjop MM MM] 00S'6F | nozi< | 0T f6861 NV1d-L
m jomwea]] Jouunyy ‘PUd . . .
M 'd1S '4d] ‘10ieI9[2xg asajoiny| g | L1 3391 ‘HOSV MIMIMIMIMEM LML J000'LS | SOOE< | OE {1861 L
/S0 10}
100, 159, 2a108
-12Ju] UONBISYIOM = = o N. - o~ et
<D = B W Z
3 g € g EEECREEEI 5| & |£|2
2 E gl 3 3 BREI[[FEE E| 5 |2z
) = 5 = = B|=|a -[E = | 8|8
: = B d T HEIR B
= 2 s s 5 [BIE w d FWVN TO0L
& § 5 ik
S/0 |unpPBN
STOOL ¥3HLO O SYNIT SOLLSLLYLS 1001
LNFWNOUIANT ONLLVIEJO
S3|yo.id [00], -panuljuod J-0] 3iqe],

PART I

Introduction

L J ® L [o o ® | ®
Aupiqedes axming - 4
N 19ppingooq
IS MM 30039/49V
p J VSv/dov adoosido] E | M 9861 | 07> | £659-1vZ (¥12) Vs 3ojuap
NOWOL ‘N3ogdL] M z661 | s> | vovsor-1€ 8oe+ AQ 113misal |
lossasold 1Avayv
‘aSMolgJeIn)
I 135j00), FIS1V|) ‘UeDIenD ‘Uapisal] M 3 €861] 01> LY19-S29 (P1L) udisa] swasAg ammyjos
| YIANOVIL
IS JILVLS
p d41ax3| 3d0OSL ‘¥2oal
M AVEdVD ‘H1Vd-1VOL
p A SLAVIAS] LvoL-s‘IvoLl AL ML ML A p Leel | sz< | 1wpi-Lg6 (S1Y) U] ‘Yoreasay aMYOs
ool FAS Mopipfoser] ¢ 8L£8-€Ty (008) Suussuidug Aifend) armyos,
p 1090%:vOs 188ue VOS] p 6861] 1 | zz66-822 (008) vonewolny Altfend) alm1yos
Z<4n_.t dj I MMM ¥861 81 SIYPLE-LLTO v+ | PV ‘2ouinssy Aiend) ammyos
LSL 6861 6 L186-v6s (40g) | Aionsoday uonepuno SYVLS]
SVATVINL ML MT M M M pLel| 0TV | pIPIIL-TST VPt "pI] ‘se01A1ag LOUBNSUO) V)
d d 1310 ..—
A _sLaay siaay pl Al p p 9861 | zi | (988-vLT (80V) dioD yei1jend)
d owureidold/sad
d wadxz/s3d
d 35220)/$30 "ouj
10AYIY/STD 1dewreN/S30] M M MM T66I] OT> TTL-8LT (£00) ‘ammyjos Juusewdug Lend
p suuny LI M A p 1861 | 0> | 0110-816(806) | "oul ‘siuswuostaug Suiwumigord
poqisaL V1| M| M| M p 1861 | 1 | 8788TS-S€90 v+ Py ‘siaskpeuy weiold
MM 08dAXY
MM SAVLL 15anQepY p M| s0961] 000'1~] tZLL-¥96 (SO8) ‘d10)) Yoreasay [8I3U30)
Ia3eue\ SOURBI
.o_o.aU\zom MM A S 8961 | 000'€<] OE0E-bLS (80L) -au] ‘dnozp 1amod ndwo)
1sajyos| p MA LL6l | o> | 9616-+26 (S1¥) SABI0SS Y %P 19puag
EpY-mojjony| M M| 8861 | 01> £LTT-9vP (30¥) .So_o.:_ow._.. Jsvoony
ysdad A .w A 18611 05> | 0060-9¢L (O1p) I __-ou ‘Sunndwo) swaisks Aviry
] F4 ar m @
JHEEEER HHERHERRIE
uMmmmw clelalP|z(ElEl E| B
2l=|2|B |8 mwwu.ﬂsmm 3
s|>|E = am aweN j00] ©w|3|§ m m 2 8 @ | sequny auoyg
AEEE sooy pautwexg |3 g ® AWVN IS
=2l |28 W 2
% |2 h - e
&
aiaairoud
ST001 ¥31'1ddNS 3LV 1ad SADIANAS SOLLSLLVLS ¥AI'1ddNS

$011jo4d sey1ddnsg "zZ-01 eiqeL

il
=
—

PARTII AdaQuest

11. AdaQuest

The AdaQuest toolset provides a variety of static and dynamic techniques for testing
Ada software. It is based on two earlier verification and validation systems, RXVP80 and
JTAVS, that, respectively, support Fortran and Jovial testing.

The static analysis capabilities of the current version of AdaQuest are limited to iden-
tifying program branches and the lexical nesting structure of specified compilation units.
Existing dynamic capabilities consist of coverage and timing analysis.

11.1 Tool Overview

AdaQuest was developed by General Research Corporation. The first version of this
toolset, version 1.1, became available in December 1991. It runs on VAX/VMS platforms.
At the time of evaluation, the price for AdaQuest started at $6,500.

AdaQuest requires that code to be analyzed resides in an AdaQuest program library.
Each library is associated with a VMS directory that contains the intermediate files of the
relevant compilation units. Several library management commands are provided. These in-
clude commands to set a current library and build a working set of compilation units. Spe-
cial facilities are provided for reading source files into a library; in the current version of
the toolset, source files are limited to containing a single compilation unit.

The AdaQuest Analyzer generates branch reports and unit nesting reports for user-spec-
ified library units. In the first case, the result is an annotated source code listing that iden-
tifies and numbers each decision branch in each program unit of a specified compilation
unit. This report is needed to select locations for the insertion of coverage and timing probes
(see below). It is also required for interpretation of branch coverage reports. The unit nest-
ing report shows the lexical nesting of the program units in a compilation unit.

Each program unit can be instrumented to collect either coverage data, timing data, or
both. The user specifies the library unit bodies and subunits to be instrumented, and each
instrumented unit is written to a separate file. Instrumentation is performed by inserting
special statements into the source code. Where necessary, individual source code state-
ments are first transformed so that these insertions will be syntactically legal. An exir state-
ment, for example, may be replaced with if and goto statements.

11-1

AdaQuest PARTII

Two different types of probes are available to collect coverage data. Branch coverage
probes are inserted automatically at each branch point (including at the start of each accepr
and block statement). Any code transformations necessary to ensure correct coverage mea-
surement are also made automatically. The second type of probe, called test case probes,
are used to partition the data collected from an instrumented program. They allow, for ex-
ample, measuring the coverage achieved in each execution of a loop. Test case probes are
inserted at user-specified points in the source code and take the form of procedure call state-
ments. It is the user’s responsibility to ensure that these are placed in a syntactically legal
fashion; AdaQuest does not check the placement. The resulting instrumented files include
file header information that identifies the unit, original source file, and type of instrumen-
tation performed. They are accompanied by files containing two additional AdaQuest-gen-
erated units needed for the collection of coverage data.

For timing analysis, probes are also inserted at user-specified locations. In each case,
the user gives a start and stop location in the form of source code line numbers; these loca-
tions may reside in different program units within a compilation unit. Again, it is the user’s
responsibility to ensure that insertions at these defined locations will be syntactically legal.
The user also specifies whether data should be measured in terms of CPU or wall clock
time.

Compilation and linking of the instrumented program is performed using the standard
VAX facilities. AdaQuest does, however, provide a compilation script that can be used to
compile the two AdaQuest-generated run-time units. When executed, the instrumented pro-
gram collects coverage and timing data in an automatically created trace file. (As with the
other tools that write coverage details to a trace file, a program run must terminate normally
so that the trace file is closed by the operating system.) If desired, the user can allocate a
name and description to the trace file.

AdaQuest maintains a test history for each body or subunit in a library in order to allow
reporting on the cumulative coverage achieved over a series of test runs. Initially empty,
the user specifies when a trace file should be appended to the appropriate histories. Nor-
mally, the test history for a unit is cleared when the program library is updated. In certain
circumstances, the user can override this function to keep a history, although this ability
must be used with great care.

The reports that are available can be produced for all or only user-specified program
units. The Test Run Report identifies the original source code file(s) and indicates how it
was instrumented. Coverage reports are generated using data from a single trace file, called

11-2

PART i AdaQuest

the current test run, and, in most cases, user-specified test histories. Between them, the cov-
erage reports provide counts of the number of times each program unit, accept statement,
and block statement was executed, counts of the number of times each conditional branch
was executed, the execution status (first-time hit, never hit) of each branch, and the percent-
age coverage of the branches in each unit. In some cases, histograms are provided to com-
pare the execution counts of different items. Two additional reports can be generated using
coverage information from the test history files alone. Timing analysis reports are generat-
ed from a single trace file. They detail the timing probe placement, the number of times
each selected code segment was invoked, and the minimum, maximum, and average time
taken for each segment. Timing data is not accumulated in test histories.

11.2 Observations

Ease of use. The user interacts with AdaQuest through a command interface. This in-
terface requires considerable memorization on the user’s part (the Analyzer, for example,
has some 27 different commands) and exhibits some inconsistencies. Although the ability
to explicitly specify the locations for coverage and timing probes can be valuable, the need
to manually refer to the annotated source code listing is tedious and a possible source of
error. This inconvenience could be reduced by providing, for example, some automatic in-
sertion of timing probes to measure the time spent in named units. Output listings are han-
dled in an unusual manner; all commands that produce an output listing automatically
invoke the VAX edlin editor.

At the time of evaluation, the on-line help provided summary information on only a
small number of available commands, although this should be a useful feature when com-
pleted.

Documentation and user support. A complete AdaQuest user manual was not avail-
able at the time of examination. The documentation that was provided, however, was well-
written and easy to follow. One nice feature is a command dictionary that provides a useful
reference manual. Tool installation was straightforward.

Instrumentation overhead. AdaQuest allows the user to control the extent of instru-
mentation by requiring the user to explicitly identify the units to be instrumented. Two spe-
cial run-time units are provided that must be included in an instrumented executable to
handle the creation and recording of a trace file. Including these special units, full instru-

11-3

AdaQuest PART Il

mentation for branch coverage of the Ada Lexical Analyzer Generator gave an approxi-
mately 19% increase in the total source code size.

Ada restrictions. AdaQuest supports the full Ada language, including extensions de-
scribed in Chapter 13 of the Ada Language Reference Manual. The only exception is the
Ada terminate alternative (see LRM 9.7.1) which contains no statements and cannot be in-

strumented.

Problems encountered. No problems were encountered during the examinations of
this tool. AdaQuest operated exactly as described in the documentation provided.

11.3 Planned Additions

Future versions of the static analyzer are expected to generate dependency reports and
check for logic errors (such as infinite loops, unreachable statements, and uninitialized
variables). Conformance checking against standards relating to the use of forbidden con-
structs and those specifying maximum/minimum constraints on the quantity of Ada con-
structs appearing within a certain scope is also anticipated. A source code profiler will list
any non-zero counts for some 228 Ada features. AdaQuest is also expected to include a
query facility that provides direct access to this data for quality analysis tools.

Additional dynamic analysis capabilities expected to become available include the use
of assertions for checking unit- and interface-level design constraints. Finally, a task ana-
lyzer is also planned that traces the actual synchronization relationships between Ada tasks,
creating timing diagrams to help in diagnosing synchronization errors such as deadlock and
starvation.

11.4 Sample Outputs

Figures 11-1 through 11-12 provide sample outputs from AdaQuest.

11-4

PARTII AdaQuest

27-JAN~1992 10:45
Library: ADALEX;WORK

ADAQUEST UNIT NESTING REPORT PAGE 1
Comp Unit: LL_COMPILE:BODY

27-JAN-1992 10:35:12

Structure Unit Unit Kind Starting Linpe
LL_COMPILE Procedure Body 26
. + LLNEXTTOKEN Procedure Spec 136
. . LLPIND Function Body 140
. .LLPRTSTRING Procedure Body 165
. + LLPRTTOKEN Procedure Body 177
. « LLSKIPTOKEN Procedure Body 190
. . LLSKIPNODE Procedure Body 203
. +LLSKIPBOTH Procedure Body 217
. « LLFATAL Procedure Body 234
. .GET_CHARACTER Procedure Body 246
. .MAKE_TOKEN Function Body 264
.+..CVT_STRING Function Body 271
. .LL_TOKENS Package Spec 326
... .ADVANCE Procedure Spec 328
. . LL_TOKENS Package Stub 334
. - LLNEXTTOKEN Procedure Body 337
. . LLTAKEACTION Procedure Stub 349
« - LLMAIN Procedure Body 352

. . READGRAM Procedure Body 383
...... BUILDRIGHT Procedurs Body 389
...... BUILDSELECT Procedure Body 449

. PARSE Procedure Body 499
..... .ERASE Procedure Body 505
...... TESTSYNCH Procedure Spec 522
...... EXPAND Prooedure Body 525
veesss . MATCH Punction Body 533
+o e+ TESTSYNCH Procedure Body 593
s ooy . SINCHRONIZE Procedure Body 596

27-JAN~1992 10:45 ADAQUEST UNIT NESTING REPORT PAGE 2

Library: ADALEX;WORK

Comp Unit: LL_COMPILE.LL_TOKENS

27~JAN-1992 10:39:35

Structure Unit Unit Xind Starting Line
LL_TOKENS Package Body a5

. . ADVANCE Procedurs Body 49

++ . .GET_CHAR Procedure Body 56

.+« . CHAR_ADVANCE Procedure Body 69

.+ + . LOOK_AHEAD Procedure Body 86

Figure 11-1. AdaQuest Unit Nesting Report

11-5

AdaQuest PART i

27-JAN-1992 10:45 ADAQUEST BRANCH REPORT PAGE 1
Library: ADALEX;WORK Comp Unit: LL_COMPILE:BODY
27-JAN~1992 10:35:12

140 function LLFIND{ ITEM: LLSTRINGS; WHICH: LLSTYLE) return INTEGER is
141 -- rind item in symbol table —— return index or 0 if pot found.
142 == Asgumes symbol table is sorted in ascending order.
143 LOW, MIDPOINT, HIGH: INTEGER;
144 begin
swaat BRANCH I PROGRAM UNIT START
145 LOW := 1;
146 HIGH := LLTABLESIZE + 1,
147 while LOW /= HIGH loop
eewes BRANCH 2 1LOOP TEST FAIL
ewwss BRANCH 3 LOOP TEST PASS

148 MIDPOINT := (HIGH + LOW) / 2;

149 if ITEM < LLSYMBOLTABLE(MIDPOINT).KEY then
sawss BRANCH 4 IF TEST PASS

150 BIGH :=~ MIDPOINT;

151 elsif ITEM =~ LLSYMBOLTABLE(MIDPOINT).KEY then
eesws BRANCH 5 ELSIF TEST PASS

152 if LLSYMBOLTABLE(MIDPOINT).KIND = WHICH then

seeee BRANCH 6 IP TEST PASS

7326 begin -- LL_COMPILE
sssees BRANCH 142 PROGRAM UNIT START
727 CREATE (STANDARD_ERROR, OUT_PILE, "std_erxor", *");
728 LLMAIN;
730 CLOSE (STANDARD_ERROR):
731 end LL_COMPILE;

BRANCH SUMMARY

Branch Kind Branch ID Begin End Branch Statement Path
PROGRAM UNIT START 1 . 145 147 145 146 147
LOOP TEST PAIL 2 147 161 147 161

LOOP TEST PASS 3 147 149 147 148 149

I? TEST PASS 4 149 147 149 150 147
ELSI? TEST PASS 3 149 152 149 152

IF TEST PASS § 152 153 153 153

PROGRAM UNIT START) 142 727 730 727 728 730

* = Branch contains an Infinite Loop
Unreachable Statements =) —— NONE --

Figure 11-2. AdaQuest Branch Report

11-6

PARTII AdaQuest
27-JAN-1992 12:13 ADAQUEST TEST RUN REPORT PAGE 1
Trace File + USR: {ADATEST)ADAQUEST.ETF ;16
Time of Run : 27-JAN-1992 12:08:39
Name : EXAMPLE_1
Description : Run with 1st test file

of Test Cases : 1

Test Run Units :

Ll,_COMPILE:BODY
Instrumented From File :
USR: {ADATEST.ADALEX2]LL_COMPILE,.ADA;10
Instrumentation Parameters :
Coverage

LL_SUPPORT:BODY
Instrumented From File :
USR: (ADATEST.ADALEX2]LL_SUP_BODY.ADA;1l
Instrumentation Parameters !
Coverage

Figure 11-3. AdaQuest Coverage Test Run Report

PART lI

AdaQuest

SBUBBIFEBUSBBUBLILIBILINISBENNLS
BUVIBIIUNBUIIIGISIIISBINSIBIIING
BEINNBENGBEN RSN RASNANBUATRISIRIIBLITIISENEBYEESY

SREBVIRIIBIEIIINININPIIEYY

uodey abes8no) Jun isenpepy ‘p-11 ainbi4

EXIT YL YT

- e
LRl

- -
-

NMFIIV4 FWoLs Kag Joud el
ivadad Xaa omnad voeEt
NOIlao Xad ORna L8Z1

S3ONWY TOUSK KGE ONnd €O%
SIVNYILTV X0E dHod (6

90:LEOT 266T-NNL-LT
4008:3404408 TT

llllllll B

(3312

.
2222222)
sys9833

]

L]
L1222 11

b ol -S4
ww awn
"~

o™
-t
—— — — ——— - ——

-t @ W -t

.

HOIW Xad Ound £ES

anvdxa Xge JoMd €2§

aswa g4 D0¥d SOS
dsNvd X0E D0Nd 66F

10373SA1INE Xa€ J0Nd 6%)
IMOINGTING X08 D03 68E
RdDavad Xa9 O0uMd €6¢€

NIVNTT XqQ8 Jodd Z6¢

NDIOLIXANTT Xq€ D0Md LLf

GNIATT X0€ MDA OVT

FI1gw00 T1 Xad D0Nd 92

— e ——— — ———— T ——

2TiG€I0T 66 T-M¥L~LE
KQOE:TTIZNND T1

!
|

i oot 08

] WOMIENE O3 POIJ{YWION - FUCTIWDOAUY

\
1]

]
(1]

\
0z

§ | suoyIwdeaur |
o_ _
_

Ajun westasg

PumN LA ohpt

WHOAIXTIVAY 3ATvIqTT

4 aova 1¥0dTd 2OWYIADD IINN ISAN0VaY PT2ZT 266T~-NVC-LZ

T T oN @ sswy Ive} Lg
- - - SWUIJITYND l¥0day - - -

1 : sese) 88l §

®TF3 3983 IFT Y3fa uni uojydizoseq

1 FIaNeXa : saey

6€:0012T ZE6T-RYL-LZ ¢ uny Jo saly

9T /413" 15anOVAV(ISYIVAVI:uSn : o[1d eowiy
- « - NOTIVWYOJNI MNN 1§31 - ~ -

MUONIXTTVAY :ATeIqy]

T 20N N0aT FOVGEBA0D 1IN ISINOVQY 2T TH61-MNL-L2

11-8

AdaQuest

uoday jje1ag abeiero)d ysuelg 1senpepy s-41 ainbid

|==R~-1| ITH JeaeN | so-oot (1941 } sbeieac) jus)y 103
I 38 | 3TH sayl 3exy4 Rp &8 19 | Itun Ut sagouwiq
| | [] L ITH seyouvag
I | | €6s (11 SUOFITI0AUT ITUN
! ! | 2A13VIOANND RO 1831 SIHI
[} | | savsssssvasvennasvs | PEE i LSt VS ISTT | @
L | | (] [131 Juvd asTT | L
9 | | sesnssne | SET | zst S5V 1583 JI | 9
S ! ! sasvnves | SET I 181 SS¥d IS21 JISTI) §
[| | ssvessvsnssnavssnssansns | 620 1 et SSYd ISTL AT | ¥
€ 1 | swssvsasuvssnsssnsonsesssaranssrvorssssnsonsssvoss | 968 [29 S5¥d 1531 #0017 | €
4 | | sess | €9 (IR 24 7TIVA 3581 3007 | 2
1 | | sssvsesssvs | B6T 1t IUVLS IINN WVWOOMd | T
TUGEZ0T ZEGT-NYL-L2 AGOATTISND T1 ¢ ITun dwod ug
- 0¥y * ®uUjT W
- AGNI3ATT & jun weaboxg Q.,
[+ o p —
P —
o Joqung | w/3 | | od | | ! | [} 93TH 30 ! ¢ supq PUTN youwlg | sequng
Youwig | | o001 os 09 oy oz o\ Jequny | | yourig
] t Wnugxel 03 peIflvuION - 8JTH JO Jaqump | | |
MoK IXTTVAV :A1wIqy]
€ a0vd J¥0A3Y TINIZQ FOVNIA0COD HONVNE 153n0OVAV 00:€T Z66 T-NNC~62
s8x : pespnyoul £303syy 398y
. on @ osw) Isel g
= =~ - SUFIJITNAD J¥oddd - - -
t ¢ sesw) 3sel §
_ _ GE3N0IZY ZEGTI-MVCL-LZ t uny Jo ewiy
T1213°T A Isandvaviisaivav] susn @ o\ 1d soviy
- = ~ ROIIVWHEOANE NNN 1S3 ~ - -
QUM | N/3 | fememmmmee)emneeeaen] I -1 I | ®3t 3o | § supt PUTX youweag | Jequny
Youwig | | oot 08 09 o 14 [Joquing | | Youwag
| J STWIRYH 03 PIZTIYWION - SITH JO Iaquan i | : |
MION EXTIVAY 3KI03qTT]
1 aoNdg 2¥04aY TINLIRA FOVMEA0D HONVYE 1sandvav 00:€T Z66T-NNL~62Z
- ., v - —d.. — - el — .

PART Il

AdaQuest

Hodey Atswwing ebeieao) ydueig i1senpepy "g-11 einbi4
| P i _
80°0S s] 9 | so0°0§ § 9 | ot (B 114 MIELINE TUOLS
80°0§ 4 z 1 | s0°0% z 1 | 1] | voeY ivaday
$0°0S 4 2 t | %0°0§ z 1 |] | Lozt no11d0
80°001 £ 3 1 | %0°00% € T | €) €01 SNV AU
[YAd () 1 t (29 i s L (2) Lt) L6 ALONNALTY
| | |
8Q:LE:QT ZE6T-NYC-£2 A008:3¥04dN8 1T t JINA dMOD NOd FOVNEAOD
i i [
(124 (3 s [(11 [1 2 1 s (114 | L [N 113 HOIWH
(LM 7] 3¢ 1 114 I 99°v8 144 1314 | (1 | s2§ anvaxa
$0°007 [[96E 1 80°00T 1 [111 | [I so§ IsNd
(Y47] 44 11 T [T £] 11 1] Ly | 660 asiuve
20°00¢ € € 2] I s0°001 € 1] | € | 6% 30TTd8011NE
sL'98 €1 3 11 [YA 1 €1 2] | st (1] 18918aTINE
40°00T 1t 44 1 | 80-001 14 1) 1 | gof RNDAVEN
$0°00T 1 1 1 | s0°00T T) 4 | 1 | 2s€ NIVNTT
80°001 € € (141 | %0°001 € (734 | € | LeE NDACIIAINTT
S Lo L L 861 I a§°e8 L [}) [} | ort an1d1I
807001 1 1 1 | s0°001 1 T] 1 192 IO 11
1 1 |
ZUISEIOT ZEET-NVL~LT - AQORITIIINOD 11 & JIND dWOD ¥OJd TOVERACD
aowganod | TvIog A3l | SUOTIWDOCAUT | ZOWNIAOD | 3ITH | suojawdcAuT | 3JfUp VI | § w1 ajun weazboza
INZD ¥ad | ~-3ITH esyduwag-- | ayun | INED ¥ad | seyouwag | atug | segouvag |
FATITIVINKAOD ! NnY 1531 SIHI) }
MAON IXTIVGY 41w2qL
2z aovd JY0dAN ANVSINS TOVNEAOD HONVNE 1S3NOVaY S1:ZT TEET-NUC-LT
o8k : pepnioul K10ISTH I8l
of : ese) 3se}l Ag
- = - SYFTATIVND W04 - - -
1 : seswd I88] §
STT3 383 38T Y3IIA uny & uojadfioeeq
U IdNNXT ¢ suey
6€380:2T Z661-NNC-LZ ¢ uny Jo swyy
STtALE 3SANOVAYIISAIVAVY) SN @ 8113 sowlg
= = = NOILVWNOJNI MDY ISAL ~ - -
WWON IXTINAGY sAIv2q3T
1 aNd JNOQTY XNVIGIAS ZOVNEAOD HOMWNE 1SanOVaV STIZT ZE6-MNL-LZ

11-10

AdaQuest

suny 1se) Buimouys uodey efeieno) youerig isenpepy -1 1 emnbiy

t0°00 9 € 1 | s€o€e $ [} | st | 68¢ JHOINGTING

0083 FTIHI0O 11 ¢ JINN &WOD NOd FINNIA0D

SREINSBTISIIINISINS SHSULBBUSIDISNSRIINBLES

sssvssraves AGOR:FTISN0D T1 ¢ 3ITUQR YOTINTTANOD JO sessee
[TTYTTY T YYYY 96 : UswsPIg 1w BUTPUT 44,
[T YT PYYY Y F 2 | dsV)Y 1881 [TY)
C.C-OC"..CIICC'.CI..CCCCCICC..CIC.CI...'.CC....C..I.CC.ICC'C.'C.C.O.C.CI.OC.-CC.I'.IC..CCI. IV BBYBIGE C'CC'C.C...C.....IGOCO.NUF
3OWHAAQD | w30 WON | SUOTIWDOAUT | FOVWIAAOD | IIH | suot3eoaur | afup Ul | @ Supq Ajup weiboig
1IN ¥3d | ~-3ITH seyduwig-- | Tup | IN3D ¥Bd | seyouwag |} run | seqouwag | -
FATINTNANHND | A8V¥D 1833l SIHZ | | MIOK {TAONd XFIVAY :K31%1qi]
€ aonNg JMOdIN INWHHNS TONAIAOD BOKVNS 183n0VaV 20307 Ze61-MNC~1E
s0°02 [4 € 1 | %0°02 € 1 { st 1 e8¢ IHOINQTING
ez 8] 1 1 s '] ¢ | it)| €0t WGV
$0°001 1 1 1) s0°00T 1 3 | T | zs¢ SINTT
%0°001 T 1 14 | s0°001 T 4 [4 1 92 TI14NO0D T1
PO9ZIEL T661-NYC-OE A00E:TTINOD T1 ¢ JIND 4MOD ¥OJ IINVNIACD
T CC.I.ICC-.I.IICCI..IICII.C.C.C.CCCC.C.C.!IIII'IC.IIIICCCII-..'.C'C.CC.ICCCICC -.C..C'..I..C” 88 e S8883888 —
o XLITYITYI TS XQO€:TTIINGD TT ¢ ITUQ UOTINYTAN0D JO sssvessssve .I..
< syssvasvess 06E ¢ JUNeITIL I BUIPUT sesescssnse —
o LIXIYTYZ YT t ¢ 3I8S¥D Jsa e —
’CCICll"'..lll.Cl!iﬁiCCC‘.'.C'IC'I-CCCCCCIOCCC.CCCI.'CCCC.CCCCC".I..CI'ICCIIHOC.CCC’...CCCCCC..-C...l......'l..Ci’........
F9NIaA0D | 1303 L | suoyjwacaur | FOVYIACD | I | suogjwdoau] | v v | & sy jun weabozg
INBD ¥3ad | --3TH sayouwag-- | Ijun | INED ¥3d | sayouwig | Tun | ssyouvag | -
FATILILYTOKRAOD 1 SV 1532 §IHI 1] MIOK1ZGONE XTTIVQY 1 K3vaqyl
4 dove JNOIT AYVHMNS TOVEIA0D HONVME 1SINOVAV 00T T6GT-NVL-1E
8% & pepnyour Az0387H Iee}
% 3 sew) 388y AQ -
= - - SYIIJITVAD VO - ~ -
LT ¢ sesel Iveg §
9GITOSST TE6T-NVC-0C ¢ unM Jo swil
812413 1SANOVAV(ISalvay] susa * ®11d »ovay .
= = = ROIJVWNOJINI WOM 3831 - - -
2INAA0D | 1*302 AN | SUOTIWDOAUT | ZOVNRADD | ITH | suoyjwsoauy | WU UL | ¢ sup Ijun weazboad |
INAD ¥W3d | ~-37H seyouwig-- | un | INZD W3d | ssyouwig | Tun i sagouvig -
AATIINTANRDD] 38VY 1533 sI18B3) [} WIOK !FQOMJ” XTTVIY :LIwaqyy
1 avd JN04TY ZNBANS TOVNZACD HOMVIE 1s3nbvav 20301 TG T-MNL-1C
|
!
- - - — . - - - |

PART I

AdaQuest

uodey 1H-10N abBBieno) yosueig isenpepy 'g-11 einbid

90€ LOE 90€ sOE 1Ot I. s I s0°0S I zzet NNZLLVd FWOiS
662 962 | 4 1 so'0S | voct Pl P
$62 »62) z 1 s0°0$ I tozt _ WO13d0
(114 | 1 I so°o08 | gLzt NYBIIVA 2N NOOT
| 0)} sp‘00T | €OT $I0NN Ao
(1 (3¢ Lt €1 44 1 ot 6 (] 9] ot [Y44 {7 1 t6 2YNILLTY
| |]
$0:LE:0T Ze6T1-NNL-LZ XQO9I1¥0dans T ¢ JINN EWHOD NOd FDVNIACD
1 } |
11 (1] | z 1w | €€S HOIVH
L] G T | 4 1 9°ve | sT§ anvaxa
| 0 | so°00r | 0§ asvig
€€l EET 26T €T OETl 621 |] [I YA 1] | ¢6¥ asuvd
| 0 I %0°00T | 6p) 333138a7100
29 Ls | z (I YA T] | ¢9¢ IHOT¥QTING
| 0) %0700 | €9€ Hengvnl
| 0 I sg-00r | Zse i
1 0 1 s0°00T) Lce NDIOIIXINTI
L | ¢ [1Y] | oyt ANIITI
" 0 | so-oot “ L1 TIISNO T
1
TTGE0T 2661-NVr-L2 - XQOU:TTIANOD T1 & JINA SHOD NOd FOVNIAOD
TH 10N seyouvig Jo 8q1 | ITH oM | ebwieacd | ¢ supy ITun weaboaa
| Seyouwag | 3Jue) 18z |
) A2A12IVIONOD |
NYOR L XTTVAY :KIwaqy]
z NG I¥Od IIH-10N TOVWEACD HONVWE IsTNOVAV 2132T Z66T1-NYr-L2

se)X : pspnrouy A10381H jeey
o : esv) ive] Ag
- - - SUILAITVND N0 - - -

1 : seve) Iweg §
S113 1983 I8 Yaja uny : uojadiioseg
1 o ¢ ooy
€C:0022T TEET-MNC-LT ' uny JO swyy
$T/313°38200VAVIISIIVAV] :uSn © w73 sowvI]
= = - NOIZVINIOJNI MOW JSEI -~ - -

WNOR IXTIVAY 3 A3waqia
1 20V INOdIN IIH-ION ZOVWIAOD HONWNE 1SINOVAY 93T TS T-NVr-L2

14 Z66T SS:9Y:0T §Z uUep eng TURT 3TqI0U° 400 pom

11-12

AdaQuest

PART Il

uoday peleg Ai0isiH eBeiaa0) 1senpepy ‘6-11 8inbid

sss Kadme 97 3TUN $7Q3 203 A1038Y 1981 YL ses

d9VI3AAN0D | 130} ney | suoypndaxy

INED ¥3d | -~-1IH sayoduelg-- | JO Jequny
FATIIVINRHAD

SE6E:0T T66T-NYC-LT

SHINOL 1T TTIINOD 11T :31Tup dwod

Z anNg

SOWMAA0D | W |
IN3D W3a | seypueag |
nmny 18ag

JNOdEN TIVIZA ZNOIFIN FOVYIACD ISINDVOY

suojaIndexy
30 aequny
STHI

| ssyouwig

| 30
|

| ¢ suyg 1tun wwiboag
Taquny |
|

Mion ! XTTVaY 141w1qyq
PIIZT TEET-MNL-LZ

-

(12803 S 0 ris (I 1 2 1 S 032 | L | €€8 HOIVM
98 8 0 1384 (I 2 0]] | 84 032 | 0 | ST% anvaxa
10001 S 0 »oe | s0°00T S 0y | s | go08 asvia
sL°h9 1t 0 4 [T 1t t | Lt t 66¥ asuvd
20°001 €] (13 I\ 8000t < (1] { € | &¥% 10712801I0E
sL°98 £t 0 [141 [YA 1 4 (1] | St | e8¢ IROINaTING
\0° 001 1t 0 z | s0°00% i8¢ 4 1 1 { cog Kngoavas
s0°001 1] H | s0°001 1 1 | 1 1 zse I
807001 € [oLz | %0°001 € [149 i € I te€ ADIOLLXINTT
40" 001 [1 56¢€ | s0‘o00T] L6t |] | ovt ANILTT
%0°001 T 0 z 1 e0°00¢ 4 T [14 192 FIISOO T1
’ 974415° I5anDVOY{3S2IVQY) usD o[14 ®ae1l
80:T212T TEET-NVL~(Z t UOjInDexz jJo eayy
Z¢ mou 3185112
143
(12813 [S »S? [1 28 () S 114 | L | €€S HOLWNR
(1] 1t 1t 1214 (It AT) 144 ¥sT \ (44 | sT§ anvaxs
s0oo0t s S a6¢ | s0°001] [113 | S | sos aswa
(YA 4] 14 1 1 [N TR 1) 1t T] L | ¢6? asuvd
L0001 € € [}] I s0-o0t € 11} l 4 | oo 20F1asaIat
sLo98 14 (3¢ » (I YAS 1) 4 1] § st | s8¢ IROTNCTING
80°001 14 ¢ n 1 | s0°00% 1t T | 144 | e9€ - snidaval
20°001 1 ¢ t i s0-o00t T t | |4 (113 AIWTT
s0° 00t € € 1134 I so0-o001 € (131 | € b Leg RDIOILAIXTT
L9 t L 861 t es¢ee i 861 !] [121 GN1dTI
30°001 1 T 1 I so0°001 1 1 | 1 [IK 14 TS T1
T£412° 1 W0y 35Endvav(3sAIVOV] susn : o114 vy
CEI003ZT Z66T-NNC-LZ : voTINOeX] jJOo swil
T¢ AnY 1833

n
FDWAN0D | 1m0l asyl | wuoranoexaz | FONWAAOD | M | suog I qounig | § euil Iyup weiboly

INZD WAd | --3TH seyouwig-- | Jo IequnN | IRED Wid | seqouvig | Jo lsqunn | jo Jequny |

FAIIVTIONND | MnY IS¥I SIHI 1 |

2T:GE:0T Z661-NVL-LT
X00E:TIIANOD T 13Tun dwod
T 3w

S04 TIVISA XWOLSIH TOVNIAOCD Isandvay

WIORIXTINGY :43vaqT]
Pyt Te61-mNC-L2

11-13

PART I

AdaQuest

uoday Aewnwng Ai01s|H eBei0A0D 1senpepy ‘01-1 1 8anb)iy

t as°29 | 60€ ! ({24 “ s SIVIOL sas
| (| _
80 LOE 90€ SOE TOC | s0'0s ot | s | zzet NIAIIVE TNOLS
662 962 { s00s | ’ i 4 t voct ivaani
S62 62 i 8008 | [l z I ezt _ NOIld0
[T1 i so'o8 | S | ’ I ELet MIRLINE N %007
982 | s0°0 I 1 l [} (T4 OGVEHY %0071
i sc00T | 4 i € 1 g0t SZONV TOWEH
Lt z1 s 1 sv'ze | Lt 1 " (1Y ALY
B0:LESOT ZEET-NVL-LZ X008:140ddns 1T : ITUn dwoD 10j SHEINA0)
| 80°0 | [1] | [} 1 sss S(PIOL o
[T2 < 4 74 2 0T 61 ()4 Lt | | | |
9t st (2SR 4 | zt n ot 6 i) | i
] L 9 s ’ € z T ! %20 ' 1] | 0 sz NOIIOVDIVITI
TT:VEDT ZEGT-NVP-LT NOILOVANVITI TIIAH0I T1 ¢ ITuUN dwoDd 30] s6RIsA0)
| s0°0 | L1 | 0- | ses BTPIOL oes
® L ’ S i so0°¢ i ’ |] (1] TOUVAQY AVHD
v € z ¥ 1 so0'0 I v | 0 1 96 NVHD 139
95 13 1 13 } | | 1
s 13 05 6y o Ly 9 11 I w00 | 41 I 0 (' Dduvaav
SEI6E:0T 266 T-NVP-LZ SNDIOL T TTIIAN0D TT : 3ITun dwed 103 ebeieao)
I YAL T Wt | 7] t ess BTPIOL sos
6t 1 800 | 1 | ° | etz . HIOBIINSTE
ot I %0°0 1 1)] | €0z FOOMIIASTT
Lt] 800 | 1 | (] | o6t NDUOLIINSTT
9t st "n I %0°0 i € | 0 (TR KDUOIINETT
(S S 3 ¢ 1 (] SE | s0°0) s | 0 IXT) - OMINISINGTT
€T 2t 131 o 6 1 %00) s) 0) s9t ONINISINGTT
| s0°00T | » | ’ | ort aRIIT1
t 80001 | 1 | t [1 TITMOD T1
TUSE0T Z66T-NVC-LT 0081 TTIMON 3T ¢ ATup dwod Joj ebrisac)
ITH 308 seyourig Jo ISYT | FOVYEAOD | 3Itun ur | EY (] 1 ¢ suy7 atun wezboig

{ INZD W34 | seyouwag ¢ | weyouwsg ¢ |

JNOdAN X4INS INOISIH TIIVWEAOD 1SAndvav

NyouIxaTvaY :&iwexqpt
€H:2T TOOT-NNC~LT

11-14

PART lI

AdaQuest

08-MAR-1992 12:01 ADAQUEST TEST RUN REPORT PAGE

Trace File
Time of Run
Name
Description

: USR: (ADATEST]SUN_RUN4 .ETF;1

: 08-MAR-~1992 11:35:06

: TINING_RUN_1

: Sample run for timing data using test file 1

4 of Test Cases : 1

Test Rum Units :

LL_COMPILE:BODY
Instrusented From File :
USR: (ADATEST]LL_COMPILE.ADA;1
Instrumentation Parameters :

Timing = CPU

Timing Intervals (Start/Stop Source Line Numbers)
394 - 446
453 - 459
463 ~ 496
653 - 663
667 - 717
721 - 723
7237 - 730

LY,_SUPPORT: BODY

Instrumented Prom File :
US!:[AnA!!sr.ADALI!Z]LL_SUP_;OD!.ADA;I
Instrumeantation Parameters :

Timing
Timing
320
asl
365
465
508

= CPVU

Intervals (Start/Stop Source Line Numbers)
- 2083

- 351 *

- 460

- 501

- 546

Figure 11-11. AdaQuest interval Test Run Report

11-15

AdaQuest PART Il

08-MAR-1992 12:02 ADAQUEST INTERVAL TIMING REPORT

Start / Stop Number of Minimum Time Maximum Time

PAGE

1

Average Time

Interval Line Number Executions hh:mm:ss.cc bh:mm:ss.cc hh:mm:ss.cc
~ = = TEST RUN INFORMATION - - -

Trace File : USR: [ADATEST) SUN_RUN4.ETF;1

Time of Run : O08-MAR-1992 11:35:06

Name : TIMING_RUN_1

Description : Sample run for timing data using test file 1

Test Cases : 1

= = = REPORT QUALIFIERS - — -
By Test Case : No
08~MAR-1992 12:02 ADAQUEST INTERVAL TIMING REPORT PAGE 2
start / Stop Number of Ninimum Time Maximum Time Average Time

Interval Line Number Executions hh:mm:ss.ce hh:mm:3s.cc hh:mm:ss.co

CPU TIMING FOR COMP UNIT : LI, COMPILE:BODY'®
1 394 / 446 64 00:00:00.00 00:00:00.01 00:00:00.00
2 453 / 459) 64 00:00:00.00 ©00:00:00.01 00:00:00.00
3 463 / 496 1 00:00:00.3¢ 00:00:00.34 00:00:00.34
5 667 / 717 1 00:00:00.43 00:00:00.43 00:00:00.43
6 721 / 723 1 00:00:00.78 00:00:00.78 00:00:00.78
7 727 / 730 1 00:00:00.82 00:00:00.82 00:00:00.82

CPU TIMING FOR COMP UNIT : LL_SUPPORT:BODY
4 465 / 501 4 00:00:00.01 00:00:00.01 00:00:00.01
H 508 / 546 3 00:00:00.00 00:00:00.00 00:00:00.00

Flgure 11-12. AdaQuest Interval Timing Report

11-16

[

PART Il AutoFlow-Ada

12. AutoFlow-Ada

AutoFlow-Ada generates flowcharts from Ada source code. These flowcharts can be
used to help understand an Ada program and to document it. Versions of AutoFlow that op-
erate on C, Cobol, Fortran, and Pascal code are also available. In addition to flowcharts,
these other versions generate structure charts and can interface with the KnowledgeWare/
ADW and the Texas Instruments IEW CASE systems via an import file. The C version also
includes the capability to instrument source code to report on test coverage at the branch
level; results can then be automatically annotated on flow charts.

12.1 Tool Overview

AutoFlow was developed by AutoCASE Technology. The AutoFlow family as a whole
has over 3,000 users. The first Ada version of this product was released early in 1992 and
has over 10 users. It runs on IBM PC machines under DOS (version 3.0 or higher) and OS/
2. The evaluation was performed on version 1.02 of AutoFlow-Ada. At the time of evalu-
ation, the price for AutoFlow was $9,950.

AutoFlow-Ada generates self-explanatory block-structured flowcharts using a flow-
chart layout copyrighted by AutoCASE Technology. It is intended for use on programs
with correct Ada syntax, that is, compilable programs. Compiler directives are treated as
comments and not expanded. Consequently, in some circumstances, it may be neczssary to
use the fully expanded preprocessed listing file provided by many Ada compilers as input
to AutoFlow-Ada. The tool can be used in interactive or batch mode. In interactive mode it
allows the user to both create and browse flowcharts, selectively saving or printing chosen
charts. In batch mode, all produced flowcharts are autornatically saved to disk.

Usually one flowchart is generated for each Ada procedure. Some of these flowcharts
may be very large and various options are provided for dealing with flowcharts that cannot
fit on a single page. The best of these is a block-structured page-break algorithm that uses
a top-down refinement approach to break a large flowchart into subcharts that can be pre-
sented on separate pages. Additional flexibility is provided by allowing the user to specify
the size of page used. Another option is to limit the size of the box in which flowcharts are
presented. In this case, flowchart elements that do not fit into the specified box are repre-
sented by a string of dots. Alternatively, the user can request that a flowchart saved to disk
is divided into strips that can be manually combined to make a large chart.

12-1

AutoFlow-Ada PART Il

12.2 Observations

Ease of use. The installation and operation of AutoFlow-Ada is straightforward. The
tool is fast: the documentation cites an example of generating flowcharts for an Ada pro-
gram in excess of ten thousand lines of code, where the average time to generate each flow-

chart page was less than (.5 seconds.

AutoFlow-Ada includes a number of special options and utilities that facilitate its use.
The utility mkdoall, for example, generates command files that will invoke AutoFlow-Ada
on multiple source files. Utilities and functions that support its use with non-IBM compat-
ible printers are also provided. Additionally, a file format conversion utility is available to
convert ASCII file into PostScript, HPGL, and PIC formats that can be sent to special out-
put devices, or used with desktop publishing software, to prepare high quality documenta-
tion.

Documentation and user support. The documentation is sufficient for tool use. Au-
toCASE Technology provided good support and was helpful and prompt in addressing en-
countered problems.

Ada restrictions. AutoFlow-Ada supports full Ada, the only restrictions being that
each procedure or function is limited to 2,048 basic blocks and that input source lines are
limited to 127 characters.

Problems encountered. AutoFlow-Ada ran on the sample Ada Lexical Analyzer Gen-
erator source code. Various problems were encountered if the size of generated flowcharts
was not constrained or when some particular page sizes were specified. These problems in-
cluded the process hanging and incorrect referencing between subcharts. AutoCASE cor-
rected the underlying problems and provided a new copy of the tool.

12.3 Planned Additions

Version 2 of AutoFlow-Ada is scheduled for release in the fourth quarter of 1992. It will
include the generation of structure charts and a graphical user interface. This version will
also be available on major Unix platforms.

12-2

PART Il AutoFiow-Ada

12.4 Sample Qutputs

Figures 12-1 through 12-6 provide sample outputs from AutoFlow-Ada.

12-3

PART ll

AutoFlow-Ada

31VNHI11V Uonouny 4o} ydeiBmojd 9 o | ebed epy-mojdomy “1-21 einbyd

TE6T SSELTI%60 60 fiow ASoTowmpag ZSWOORW (0°1 o) wpy-moTaouy iq paywxeuwd

s

r “uﬁ a W.E:Ewlihgluﬂﬂ. i

e —F

2 LOTE MIX ~ BN LEFT MR paw
v N QNN ~ IEVIWVA“IROTE WM 3F

b .k

-

SN - INVTENALZZY MM F¥

==

I

pR-q dns TT, OTIF UF SINEEAUVIN GoRoumg 103 ¢ 3o T eheg

12-4

AutoFlow-Ada

PART ll

31VNH3 LTV uopound 10} ydeiBmold 9 jo Z efed epy-mojoiny -zt esnbiy

T66T 953L1360 60 oy Kborouper IPDOUN (0°T *I9A) WN-ALOBN Iq paquzatso

aOW - IINTINA LTI FTS e

|

122X wWOeX

_n

-

(NG - ZSVTENA TSIX %679 20 T(™ = Tre Y

I

Jopeq dne Y, 9T13 U ZMEZDIY WOy 20j 9 Jo 7 ebey

12-5

PART I

AutoFlow-Ada

31VNH31TV uopound 10} ydesBmol4 9 Jo £ abed epy-mojJ0iny ‘€-Z einbid

66T 953L1160 60 Hew KSorrmpeg 25w0oIm (0°T *TeA) wpy-sorzopw Aiq pegurecns

{ZETI =t IEOON MaN

{ZEOTH ~3 LATT NAE SNGENEN ~ BN XXX F¥
-~ T L«.
(IReTY -+ U1 MIX ©
{ILTT =% LETT IR IV = LEVIEVA"IHSTE ¥

,epe-q dne T, OTTF O KINEEAITV SOF30ng I0F 9 Jo ¢ ebeg

12-6

AutoFlow-Ada

PART Il

31VNH3LV uopdund 40} ydeiBmol4 9 jo p eBed epy-mojJoiny p-z einbjJ

T66T LSILY60 60 Brow Aforompag ISVOOYN (0°1 *Z9A) wN-woTiouw Iq peymzemn

,epu-q dns TT, OTF3 UF TMOCKCIV SORROWNG 203 9 30 § ofeg

12-7

PART Il

AutoFlow-Ada

31LVNH311V uonidung Joj ydeiBmoj4 9 jo § ebed epy-mojd0iny ‘s-zi einbidy

TE6T LSSLTI%60 60 oy ASoyompag ZewoI (0°T *TeA) wN-morzoamy Aiq pmywIenss

,e-q dns [T, T UF TMMELIV W3oaeg 207 9 7o § abeg

12-8

AutoFlow-Ada

PART Il

31VNHILTV uonound 40} ydesBmoid 9 Jo 9 abeq Bpy-mol101nY "9-Z} inbid

T66T 851L1160 60 By Afoyowspeg ISWOPW (0°1 ZRA) wa-sotonn Ay pequreed

N
N

i

¢ (T IEOTE MAN)ZDISEENN =+ BT M
130" LEXT =% BN TIOTE e

${Tre- IR0 LETT) 2008 TILL M0 =3 IESTE MaN —
1D 1EXT -+ Se0n" LXx s | |1 (3T eI SETR) EINNREUIY ~¢ TESTE_ NOK
$(Tre" LET" 122T) , 3008 THKL, Ao =8 LEXT M $3AFT° TOIR =¢ LAXT MIK

E D F

om-q dne (T, STIT W SDORETIV SO0y 30 9 3o § ebey

12-9

PART Il | DDTs

13. DISTRIBUTED DEFECT TRACKING SYSTEM (DDTs)

The Distributed Defect Tracking System (DDTs) provides for tracking and managing
defects and change requests throughout the life cycle of a software or hardware product. It
is designed to support large organizations with multiple sites and so is fully distributed and
suitable for use in a heterogeneous network. DDTs supports multiple development teams,
allowing data to be maintained for several projects simultaneously. In addition to reporting,
searching, and query tools, DDTs informs appropriate users of changes to defect states to
provide closed-loop tracking.

13.1 Tool Overview

This product was developed by QualTrak Corporation and has been marketed since
1989. There are over 100 sites using DDTs, with some estimated 5,000 users. QualTrak
provides consultancy and training, and supports its product with a hot-line service and an
on-line users group. A newsletter is expected to become available in the near future. DDTs
is available under SunOS on Sun-3 and Sun-4 systems, under HP-UX on HP-9000, under
AIX on IBM RS-6000 and Apollo systems, under Ultrix on DECstations and VAXs, and
under SCO Unix. It uses troff, tbl, sort, awk Bourne shell Unix utilities, but is DBMS inde-
pendent. For a local network, it supports network file sharing (NFS), ethernet client/server
User Datagram Protocol (UDP), and the Transmission Control Protocol (TCP). Electronic
mail is supported for remote networks. The examination was performed on version 2.1.6 of
this product running on a Sun-3 system. At the time of evaluation, prices for DDTs started
at $6,000.

DDTs groups defects by project to allow reporting on both the defects in a particular
project and to support organizational quality assurance activities across projects. Each
project is associated with one computer system, known as the home system. All of a
project’s defects reside on that home system and on the submitters’ systems as well. In ad-
dition, a subscription facility to a project is supported; in this case, defects are maintained
on the home system and the subscriber’s system. A secure-in dial facility is available that
provides easy local access to defect information about remote projects. Closed-loop track-
ing means that defect submitters are automatically informed of all changes in a defect’s sta-
tus by electronic mail.

13-1

DDTs PART Il

DDTs can be used in either a menu-driven or command-driven manner. In the first case,
a user has two avenues of access; one provides the full set of functions suitable for a devel-
oper, and the other provides a subset of functions tailored towards defect submitters.

The system defines a defect life cycle which allows defects to be managed using a state
transition mechanism; both forward and backward transitions are supported. A defect life
cycle starts with its submission and, usually, ends with its resolution. There are nine pre-
defined defect states, though the user can define others by including them in a state transi-
tion table and defining allowable state transitions. (DDTs warns of any illegal transition
attempts.) Defects can be classified as enhancement requests and subsequently tracked by
DDTs.

DDTs uses a template to guide user entry of defect reports. Information is grouped into
the following areas: detection, submitter, laboratory, resolution, and verification informa-
tion. Detection information is used to specify, for example, the detection method, the de-
velopment phase in which the defect was detected, and defect severity (one of five levels)
in addition to identification of the test system operating system and affected project. When
available, information about the defect submitter is added automatically. The laboratory in-
formation captures information pertaining to diagnosing the defect. In addition to identify-
ing the responsible engineer, it records the type and cause of the underlying defect,
recommended change, and estimated fix time and date. The resolution information is sim-
ilar. Again the responsible person is identified, but this time the actual effort required to
make the fix, the development phase when the fix was made, and location of actual changes
are recorded. Finally, the verification information identifies who accepted the resolution.

Defect reports can be supplemented by enclosures. These are additional files containing
supplemental ASCII text. They can be used, for example, to include the data files needed
to reproduce a problem. There is no limit to the number of enclosures that can be linked to
a defect report. DDTs automatically brings up a change editor for creating enclosures. Al-
though the vi editor is used by default, the user can request other editors.

DDTs provides several predefined report formats. These conform with the proposed
IEEE Standard P-1044, and with DoD-STD-2167A. They include, for example, a list of all
unresolved defects for one or more projects and a list of defects in selected states. A number
of sorting filters are available for use in constructing specialized report formats. A nice fea-
ture is a weekly report program that can be used to produce reports automatically. The met-
rics provided in weekly reports include such information as the arrival rate, fix rate, number

13-2

PART I DDTs

defects assigned to each project engineer, resolved and unresolved defects, and when these
defects were found and/or fixed.

On-line defect report displays are also available. These allow a user to identify all the
defects he submitted or the unresolved defects he, or another engineer, is responsible for.
The contents of selected defect reports can be displayed with an index pointer used to move
between different defect reports. The user can also search this index for a given string. Ad-
ditional search and query facilities are provided to answer ad hoc questions. The search op-
tion allows displaying all unresolved defects and unresolved defects of severity 1 and 2 for
one or more projects. It matches a user-defined string against the one-line summaries of de-
fect descriptions kept for each defect. The query function allows the user to specify a search
string composed of defect keywords, operators, and values combined in a C-like expres-

sion.

DDTs provides explicit support for a number of administration functions. These in-
clude cleaning up log files, checking and repairing the database, showing the status of
DDTs projects, and managing projects. Setting up a new project involves setting applicable
template files and state transition rules. The administrator also specifies the individuals and
groups who should be notified of changes to defect states and those who are permitted to
change defect states. He can customize DDTs by adding or deleting a defect state, adding
or deleting a field in the defect reports, and changing the dialog that occurs with the user
when a state transition occurs. In addition to modifying the predefined management re-
ports, the administrator can create new report types. Finally, the administrator is provided
with guidance for converting existing defect reports to DDT's format.

13.2 Observations

Ease of use. DDTs recognizes two types of users: defect submitters, and developers
who repair defects. While the menu interface provided for each type of user is similar, this
distinction allows providing a simpler interface for defect submitters. Context-sensitive
help is available in both cases. Additional guidance for expert users is available as a set of
tips. These take the form of short excerpts from the on-line manual pages and provide an
introduction to the search and query functions. Expert users can also use DDTs through a
command interface.

Template file mechanisms provide for customization and specialized defect reports can
be defined to augment the predefined reports provided by DDTs. The system includes sev-

13-3

DDTs PART Il

eral levels of flexibility. For example, each project can employ different screens, prompt-

ing, and states transitions.

The DDTs import facility is a valuable capability. It allows the definition of converters
that take existing defect reports in a defined format, convert them to a defined DDTs for-
mat, and place them in the DDT's database.

Documentation and user support. DDTs is designed so that it can be used without
documentation. Nevertheless, it is well supported by documentation that includes a tutorial,
several examples, and sample outputs. Unix-like on-line manual pages provide for quick
reference and can be integrated into the on-line manuals supported by a Unix system.

Installation procedures are well described. They include special information that, for
example, helps a system administrator determine where to place the product by providing
an estimate of the rate of growth of the database, as well as estimates of dynamic storage
requirements.

Problems encountered. No problems were encountered in the use of DDTs.

13.3 Recent Changes and Planned Additions

A new product, Remote Distributed Defect Tracking System (RDDTs), released in
summer 1992, provides a restricted submit-only version of DDTs.

DDTs release 3.0 is due to be released in December 1992. This version will support an
X-11 graphical user interface as well as the existing 7ty interface. It will also support Post-
Script for enhanced graphical charts.

The QTET test hamness is a product under development to provide an interface between
DDTs and test execution tools. It is based on the public domain Test Environment Toolkit;
QualTrak Corp. has added a graphical user interface and bound the Test Environment Tool-
kit to DDTs. QTET is expected to become available in the second quarter of 1993.

13.4 Sample Outputs

Figures 13-1 through 13-7 provide sample outputs from DDTs. Figure 13-8 provides an
example of the outputs available with the DDTs graphical user interface; it was supplied by
QualTrak Corp.

13-4

PARTII DDTs

AR AR AN R AN R RN AR R R EN A AN P AR RN AN AN R RN RN AR AR RSN R AN T AR R R AN ER VAR EARRAARE AN TANES

Bug SFDaa03277 DDTs Submitted 910305
ASSIGNED defect report bugs(l), version 2.1 Assigned 910305
2 enclosures

*gnclosure date stamp is incorrectly updated®

DETECTION INFORMATION LABORATORY INFORMATION
Detection method: customer use Assigned engineer: rico
Detected in phase: post-release
Test program name: bugs
Test system:

Version of 0S:
Problem severity: 3
Affects project: ddts

Need fix by: 910909
SUBMITTER INFORMATION
Submitter: Mike Manley

Organization: QT LABX
Phone number: 33157
Address: mikey !mmanley

sasaswssswss Problem (Added 910305 by mmanley) t#sessnsass

Prom Lori Pope at Pacesetter

2. (New?) When we attempt to modify an existent enclosure by:

1. selecting "m" vhen viewing the enclogurs

2. exit the aditor without saving the modifications (eg. no

modifications were performed) - in vi you would exit with ":q!*
3. Exit ddts by typing "q°".

v VvVVvVYVv

dthe enclosure’s modification date is updated.
>Por now, the work around is to exit ddts by typing "x" iastead of
2'q" - this exits ddts without saving asy changes.

>That may not be satisfactory if you have made changes in othex SWRs
>that you wish to keap.

swesssnssens design ideas (Added 910606 by ddts) aresasenses
stat the file before going to the editor and see if the time changed

Figure 13-1. DDTs Sample Defect Report

13-5

DDTs

PART il

DDTS MANAGEMENT SUMMARY

of

DEFECTS by PROJECT by STATE

(Tue Jul 14 14:19:11 EDT 1992)

Project New Assnd Open Rslvd Verif Dup Postp Total
DDTs 1 18 0 84 0 0 0 103
TOTAL 1 18 0 84 0 (4] 0 103
Youngest Bug Date ~> 911221
Oldest Bug Date =) 901029
Software Versions => 2.1 3.0 2.1.3
unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0
0.5, Versions =) 4.1 4.0 Sun
Sun0S unk a
none any 3.5
DDTS MANAGEMENT SUMMARY
of
DEFECTS by PROJECT by SEVERITY
RESOLVED & UNRESOLVED BUGS
{Tue Jul 14 14:19:16 EDT 1992)
Project’ Sevl Sev2 Sev3 Sev4 Sev5 Total
DDTs 10 14 65 12 2 103
TOTAL 10 14 6 12 2 103
Youngest Bug Date => 911211
Oldest Bug Date => 901029
Software Versions => 2.1 3.0 2.1.3
unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0

0.8. Versions -)

none any 3.5

Figure 13-2. DDTs Management Summary Report: Defect Reports

13-6

PART Il

DDTS NANAGEMENT SUMMARY

DEFECTS by ENGINEER by SEVERITY
UNRESOLVED DEFECTS ONLY
(Tue Jul 14 14:19:22 EDT 1992)

of

DDTs

Assigned Sev Sev Sev Sev Sev Total
Eagineer 1 2 3 4 S
mmanley 0 0) 0 0 4
rioco] 1 9 4 1 15
david 0 0 0 0 0 0
davep 0 0 0 0 0 0
carol 0 0 0 0 0 0
UNASSIGNED 0 0 0 0 0 0
TOTAL 0 1 13 4 1 19
Projects surveyed => DDTs
Youngest Bug Date => 911231
Oldest Bug Date => 901029
Software Versions => 2.1 3.0 2.1.3
unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0
0.S. Varsions «) 4.1 4.0 Sun

Figure13-2 continued: DDTs Management Summary Repont: Defect Reports

13-7

DDTs PART I

DDTS MANAGEMENT SUMMARY
of
DEPECTS by SUBMITTING ENGINEER by SEVERITY
(Tue Jul 14 14:19:35 EDT 1992)

Submitting Sav Sev Sev Sev Sev Total
Engineer 1 a 3 4 5

apanley 4 3 29 3 b 40
cindy 3 5 22 7 1 38
ddts 2 6 by 2 0 21
carol 0 0 3 0 0 3
rico 1 0 0 0 0 1
UNASSIGNED [] [} 0] 0
TOTAL 10 14 65 12 2 103

Projects surveyed => DDTs
Youngest Bug Date => 911221 .
Oldest Bug Date => 9010329

Software Versions => 2.1 3.0 2.1.3
unk 2.2 2.0.3
2,1.2 2.0 2.0.1
bar 1.0

0.S8. Versions => 4.1 4.0 Sun
Sun0S unk a

nons any 3.5

Figure13-2 continued: DDTs Management Summary Report: Defect Reports

13-8

PART Il DDTs

DDTS MANAGEMENT SUMMARY
DEFECT ARRIVAL § REPAIR RATE
ALL SEVERITY LEVELS
{Tue Jul 14 14:19:40 EDT 1992)

Week Date ¢ New # Resolved Diff # Unresolved
1 901028 1 0 1 2
2 901104 0 0 0 2
3 901111 3 2 1 3
4 901118 0 0 0 3
5 901125 0 [} [/] 3
6 901202 0 [} 0 3
7 901209 2 1 1 4
8 901216 1 0 1 5
9 901223 0 0 0 5

10 901230 0 0] 5
11 910106 1 0 1 6
12 910113 4 0 4 10
13 910120 1 0 1 11
14 910127 4 0 4 15
15 910203 [0 0 15
16 910210 1 1] 1 16
17 910217 0 0 0 16
18 910224 0 0 0 16
19 910303 & 0 6 a2
20 910310 0 0 [22
21 910317 1 0 1 23
22 910324 2 10 -8 15
23 910331 [} 0 0 15
59 911208 3 2 1 19

Projects surveyed => DDTs
Youngest Bug Date => 911321
Oldest Bug Date => 901029

Figure 13-3. DDTs Management Summary Report: Defect Arrival and Repair Rate (All Levels)

13-9

DDTs PART Il

DDTS MANAGEMENT SUMMARY
DEFECT ARRIVAL & REPAIR RATE
SEVERITY 1 & 2 DEFECTS ONLY
(Tue Jul 14 14:19:40 EDT 1992)

Week Date 4 New # Resolved DifE 4 Unresolved
1 201028 1) 1) 0 0
2 901104 0 0 0 0
3 901111 0 0 [0
4 901118 0 [} 0 0
5 901125 0 0 0 0
6 901202 0 0 0 0
7 901209 0 0 0 0
8 801216 0 0 0 0
9 901223 0 0 0 0

10 801230 0 0 0 0
11 910106 0 0 0 0
12 910113 [} (] 0 [+
13 910120 [} 0 0 0
14 910127 1 [] 1 1
1S 910203 0 0 (1] 1
16 910210 0 0 0 1
17 910217 0 [} 0 1
18 910224 (] 0 0 1
19 910303 1 0 1 2
20 910310 0 0 0 2
21 910317 0 0 0 2
22 910324 1 3 -2 0
23 910331 0 0 0 0
59 911208 1 1 [] 1

Projects surveyed =) DDTs
Youngest Severity 1 or 2 Bug Date =) 911213
Oldest Severity 1 or 2 Bug Date => 910131

Figure 13-4. DDTs Management Summary Report: Defect Arrival and Repair Rate (Sev. 1 & 2)

13-10

PARTII DDTs

Arrival Rate of New Bugs (All Bugs)

16 + N |
¢ of N |
bugs N |

N |

12 + N |

N |
N |
N |
s + N N |
N N |
N N NN |
N N N NN N |
4 + NN N N N N NN N i
N NN N N NN NN NN N]
N N NN N N N NNN NN NN NN N N]
NN NN NNNNN NNN NN NNNNNNN NNN NN NNNNN N NN NN]
0 +NN |

0 s 10 15 20 25 30 35 40 45 S0 55 60

WEEK NUMBER
Fri Jul 17 11:46:59 1992
Start date = 901028 End date = 911208
Bug Resolution Rate (All Bugs)

16 +]
4 of |]
bugs | |

! |

12 +

|

] R R

| R R
8 + R . R

| R ® .

| R RR R 3

] R BR R RR |
4 + R | R ZR R RR

| R R R R RR RRRR

] ® R RRR RR R RRR RR RRRR

| = = R RRR R BRR R R RRRRRRRRRRR
0 +

g
3
3
4

S
r
+
4
L
+

Y + - e

20 35 30 35 40 45 S0 S5 60
WEEK NUMBER

Pri Jul 17 11:47:00 1992

Start date = 901028 End date = 911208

4
4
4

o+
w
[
(-]
[
(F)

Figure 13-5. DDTs Management Summary Report: Sample Histograms

13-11

'\

DDTs PART il

Total Number of Open Bugs (All Bugs)

¢ of
bugs

et e A e e S e, i, b S W o s ol St e

0 5 10 15 20 235 30 35 40 45 S0 55 60
WEEK NUMBER
fri Jul 17 11:47:01 1992
Start date = 901028 End date = 911208

Arrival Rate of New Bugs (Sev 1 & 2 Bugs)

4 + N N
of | N N
bugs | N N
] N N
3 + N N N
| - N N N
| N R N
| N R N
2+ N L N N
| N N N
| N N N |
| N » N
10+ N N NN NN N N NR®N NN N
| N N NN NN N N KNWN W N
{ N N NN NN N N NNON MN N
] N N NK KN N N NRN W N

WEEK NUMBER
rri Jul 17 11:47:01 1992
Start date =~ 901028 xnd date = 911208

Figure13-5 continued: DDTs Management Summary Report: Sample Histograms

13-12

PART i DDTs

Bug Resolution Rate (Sev 1 & 2 Bugs)

| |
#of3 + R |
bugs | R |
| R I
| R |
! 3 |
2+ R RR R BRR
R RR R RR
R RR R IR |
R RR R R
R RR R R
10+ R R R R R RRER RR RRR
R R R R R RRRR RR RRR
R R R R R RRRR RR RER
R R R R R RRRR RR RRR
R R R R R RRRR RR RRR

0 5 10 15 20 25 30 315 40 45 50 55 60
WEEK NUMBER
Fri Jul 17 11:47:01 1992

Staxt date = 901028 End date = 911208

Total Number of Open Bugs (Sev 1 & 2 Bugs)

8 + 0 |

tdof | 0
bugs | 000 00
| 000 00
6 + 00 0000 000
00 0000 000

4

2

0

0 L 10 15 20 35 30 35 40 45 30 S5 60
WEEK NUMBER
Pri Jul 17 11:47:01 1992
Start date ~ 901028 Xnd date = 911208

Figure13-5 continued: DDTs Management Summary Report: Sampie Histograms

13-13

DDTs PART I

DDTS MANAGEMENT SUMMARY
Three Line Bug Summaries
Tue Jul 14 14:20:02 EDT 1992

DEFECTS FOR PROJECT DDTs

Bug Number = 00Qaa00051, Project = DDTs,
SteN, Sv=3, Things to remember for the DDTs Installation Upgrade
Module: upgrade, Vexrs = 2.1,Engr = mmanley,Pound: 911019,Pixed: ??

Bug Number = Q0Qaa00079, Project = DDTs,
St=A, Sv=3, bugs(l) index printing needs to be much faster
Module: bugs({l), Vers = 2.]1,Engr = rico,Pound: 911213,Pixed: ??

Bug Number = 000aa00026, Project = DDTs,
St=A, Sv=3, Only 1 line should be repsated on pags forward thru index
Module: bugs(l), Vexrs = 2.1,Engr = rico,Pound: 910908,Fixed: ??

Bug Number = Q0Qaa00075, Project = DDTs,
St=A, Sv=3, This is a reminder about malloc(3)
Nodule: bugs(l), Vers = 3.0,Engr = rico,Pound: 911301,Pixed: ??

Bug Number = 0Q0Qaa00078, project = DDTs,
St=A, Sv=3, Adminbug nseds to set up CN stuff
Module: adminbug, Vers = 2.1,Engr = mmanley,Pound: 911212,Pixed: ??

Bug Numbar = QQQOaa00081, Project = DDTs,
StwA, Sve3, the mail.subject template file nseds documentation
Module: mail.subject, Vers = 3.0,Engr = rico,Found: 911213,Fixed: 7?7

Bug Number = Q00aal0086, Project = DDTs,
St=A, Sv=m3, CM-notify needs to be in proj.notify file
Module: adminbug, Vers = 3.0,Engr = smanley,Pound: 9113219, Fixed: ??

Bug Number = SPFDaa03265, Project = DDTs,
St=A, Sv=3, G.E. suggests moving & per-projecting some template files
Nodule: bugs(l), Vers = 2.1,Engr = rico,Found: 910114,Fixed: ?7?

Bug Number = SFDaa03270, project = DDTs,
St=A, Sv=3, G.E. wvants to bave a mechanism for total mail supression per sta
Module: bugmail, Vers = 2.1,Engr = rico,Found: 910130,Fixed: ?7?

Bug Number =~ SFDaa03276, Project = DDZTs,
SteA, Sv=3, Last-mod not updated vhen enclosure is modified
Module: bugs(l), Vers = 1.1,Engr = rico,Pound: 910305,Pixed: ??

Bug Numbar = SFDas03290, Project = DDTs,
8t=R, Sve5, New bugs loaded via bbox are not displayed
Module: bugs(l), Vers = 2.1,Engr = rico,Found: 910419,Fixed: 911221

Figure 13-6. DDTs Management Summary Report: Bug Summaries

13-14

PART Il

DDTS MANAGEMENT SUMMARY

of

General Statistics

Projects surveyed =) DDTs
Youngest Bug Date =) 911221
Oldest Bug Date => 901029
Software Versions =) 2.1 3.0 2.1.3
unk 2.2 2.0.3
2.1.2 2.0 2.0.1
bar 1.0
0.8. Versions =) 4.1 4.0 Sun
Sun0S unk a
none any 3.5
Assigned Engineer Statistios
0f 103 assigned bugs:
NO ONE assigned 0 bugs =>
smanley assigned 44 bugs =)
rico assigned 43 bugs =)
david assigned 15 bugs =)
carol assigned 1 bugs =>
Bug Submission Statistics
0f 103 bugs submitted:
mmanley submitted 40 bugs =>
cindy submitted 38 bugs =>
ddts submitted 21 bugs =>
carol submitted 3 bugs =>
rico submitted 1 bugs =>

How Pound Statistics
O0f 103 bugs found:

10 bugs
20 bugs
2 bugs
60 bugs
8 bugs
1 bugs
2 bugs

Now Resolved
of 84 bugs
53 bugs

4 bugs

6 bugs

13 bugs

3 bugs

S bugs

When Caused S

Figure 13-7. DDTs Management Summary Report: General Statistics

found by
found by
found by
found by
found by
found by
found by

Statistias
resolved:
rasolved by
resolved by
resolved by
resolved by
resolved by
resolved by

tatistios

source oode
design
documentation
po fix

0.00%
42.72%
41.75%
14.56%

0.97%

30,838
36.09%
20.39¢8
2.91s
0.97%

author code review
in~house normal use
group cods review
customer use
interactive test
random unplanned test
functional test

Y

unreproducible

not a bug

13-15

-)
=)
-
-)
-
-)
-)

-
-
-
-
-
=)

(Tue Jul 14 14:20:09 EDT 1992)

9.718
18.42%
1.94%
58.35%
7.77%
0.97%
1.94%

63.100
4.76%
7.14%

15.48%
3.57%
5.958

DDTs

DDTs PART lI
Of 81 bugs: B
15 bugs caused during design =) 18.52%
36 bugs caused during post-releasse =) 44.448
12 bugs caused during alpha test =) 14.81%
3 bugs caused during beta test -) 3.70%
10 bugs caused during implementation =) 12.35%
3 bugs caused during investigation =) 3.708
2 bugs caused during integration =) 2.47%

When Pound Statistics
of 103 bugs found:

12 bugs found during alpha test -) 11.65%
74 bugs found during post-relsase =) 71.84%
4 bugs found during implementation’ =) 3.808%
32 bugs found during design =) 1.948%
9 bugs found during integration => 8.748%
1 bugs found during ianvestigation =) 0.97%
1 bugs found during functionmal test =) 0.97%
¥hen Fixed Statistics
0of 80 bugs fixed:
51 bugs fixed during post-release =) 63.75%
13 bugs fixed during alpha teat =) 16.25%
2 bugs fixed during beta test -) 2.508
3 bugs fixed during integration =) 3.75%
3 bugs fixed during design =) 3.75%
6 bugs fixed during investigation -) 7.50%
2 bugs fixed during implementation =) 2.508%

Severity Statistics

Number of severity 1 bugs = 10 =} 9.718
Nuaber of severity 2 bugs = 14 = 13.59%
Rumber of severity 3 bugs = 65 => 63.11%
Number of severity 4 bugs = 12 => 11.63%
Number of severity 5 bugs = 2 = 1.94%
Status Statistics
Number of new bugs - 1 = 0.97%
Number of opan bugs - 0 = 0.00%
Number of resolved bugs = 84 => 81.55%
Rumber of postponed bugs = 0 = 0.00%
Number of duplicate bugs = 0 = 0.008
Number of verified bugs - ¢ = 0.00%
Numbex of assigned bugs - 18 =) 17.48%
Mumbexr of integrated bugs = 0 = 0.00%
Rumbar of released bugs - 0 = 0.00%

Figure13-7 continued: DDTs Management Summary Report: General Statistics

13-16

DDTs

PART i

Severe Defects in Selected Projects

All Defects in Selected Projects
Bugn by Stete (laciudes Severty 1,2, 3, 4,4 5)

Bugs by Stais (Includes Seventy 1, & 2)

AN N 1)

jects

Unresolved Defects in Selected Proj
Bugs by Severity (inchedas Statss 5. A, & O)

All Defects in Selected Projects
Bugs by Sevenity (nchces Sietes 5, A, O, B, & V)

- All Bugs

Bug Find & Fix Rates (inclodse Seversy |, & 2)

Severe Defect Amrival & Resolution Rate

ugs

Defect Arrival & Resolution Rate - All B
Bug Find & Fix Retee (lmchaces Seversty 1,2, 3, 4, & 5)

Flgure 8. Examples of GUI Outputs

13-17

PART Il EDSA

14. EXPERT DEBUGGING SOFTWARE ASSISTANT (EDSA)

EDSA is a browser that supports understanding and static analysis of Ada source code.
It provides such capabilities as control and data flow browsing, pretty-printing, elision-
based viewing, and search management. In addition, its annotation capability can support
the conduct of code reviews and inspections, as well as capture the progress of formal ver-
ification activities.

14.1 Tool Overview

This product was developed by Array Systems Computing, Inc. and has been marketed
since 1991. It has between 5 and 10 users. Array Systems Computing provides software
consultancy and training, and performs independent verification and validation activities.
Tool users are supported by a newsletter and hot-line support. EDSA is available under
Unix, VMS, and DOS. An X-Windows version is available. The examination was per-
formed on version 2.0 of this product running UNIX on a Sun-4 system with OpenWin-
dows. At the time of evaluation, prices for EDSA started at $3,750.

Use of EDSA starts with parsing an Ada source code file. This produces an attributed
syntax tree and symbol table that are stored in the user library. A successful parse is not
required for browsing and any errors encountered during parsing are reported, together with
appropriate warnings. When a program is contained in several files, compilation units must
be parsed in compilation order. The output of the parser is used for browsing and EDSA
can be invoked on any of the parsed files independently. If required, preparation of a pretty-
printed output version of the original source file is available. This uses standardized inden-
tation based on the parse tree to emphasize the control structures of the code.

EDSA supplements the traditional random traversal and string searching common to
many browsers and editors with several logic-based traversal methods. These additional
traversal methods allow a user to exploit the structure and meaning of the code. Specifical-
ly, the following types of traversal are supported:

» Random. Movement is achieved by usage of the cursor and scrolling keys, and by a
set of defined focus commands.

« String searching. String commands find specified items in the code, for example, the
statements that a particular statement depends upon.

« Syntax directed. This allows the user to follow paths defined by the syntax tree.

14-1

EDSA PARTII

« Dependency. Provides for tracing back all the statements that the currently selected
statement depends on (typically these statements are the controlling statement and the
statements that define its input variable values).

« Data flow. Allows tracing back to where a variable was originally given a value and
then ahead to every usage of that value until it is changed.

« Control flow. Follows the control logic of the source code.
« Object-usage. Allows visiting every statement where an Ada object (that is, a vari-

-able, parameter, component, or slice) appears in a specific context.
In each case, a stack and backtracking facilities are provided for switching between paths
when more than one path can be followed.

When browsing, the source text is pretty-printed in the view window. This window
changes as the file is a traversed or new views constructed. The message window displays
the most recent commands entered and, sometimes, messages relating to the current com-
mand. The response box is a temporary window used to notify the user of problems with
an entered command or to ask for verification of a command. During browsing, the user
can switch to an editor and, at the end of the edit, cause the syntax tree and symbol table to
be appropriately updated.

Views are provided to help mitigate the complexity of perusing large programs. Views
are a selection of some or all of the statements in the source code. By showing only specific
parts of the code, they allow a user to restrict himself to only those features of interest, for
example, those portions of the code that are within a particular depth, that use a specified
symbol, or that use a specified structure. Views can be created, modified, printed, and com-
bined.

EDSA’s statement annotations are useful for adding documentation to source code
without modifying the original source file. Whereas comments exist in both the source code
and syntax tree, annotations exist only in the syntax tree (although options to cause them to
be included in the source code are provided). This can be useful for recording temporary
observations during an analysis session or for recording other types of working notes. De-
pending on the value of a customization parameter, these annotations act like special com-
ments or are hidden from view until required. After editing, EDSA can cause the syntax
trec and symbol table to be appropriately updated and annotations inherited from the old
tree, adjusted if necessary, to conform to the changes.)

Pebbling is another type of annotation. Here the annotations, or pebbles, are used to
record the fact that statements have been examined and that some conclusion about their

14-2

PART Nl EDSA

correctness has been reached. The pebbling feature uses dependency information to link
each of a statement’s inputs to all of the statements that might provide values to those in-
puts. It propagates correctness information by automating a generalization of the following
rule from propositional logic: Given that A is true, and that A being true implies that B is
true, then it follows that B must be true. (A, A — B = B). The user places white pebbles
to indicate that the statement and its contributors are assumed to be correct, that is, globally
correct, for verification purposes. He places grey pebbles to indicate that only the statement
itself is assumed to be correct, that is, locally correct. If the contributors to a locally correct
statement are globally correct, EDSA automatically replaces a grey pebble with a black
pebble to indicate that global correctness has been derived, although not asserted.

14.2 Observations

Ease of use. A user can interact with EDSA using a command line with auto-comple-
tion, cursor keys or a mouse to move around the menus and command line, or key bindings.
In the latter case, default keys are bound to the most commonly used EDSA commands; the
user can adjust these bindings to customize EDSA as desired. Additional opportunities for
custornization allow modifying text appearance and system parameters. Examples of sys-
tem parameters include switches that specify whether annotations should be hidden and
whether the user should be queried for backtracking to previously skipped paths. Expertise
level is another system parameter. It allows a user to be assigned one of six levels of exper-
tise that are used to determine the extent of help, menus, and wamings messages provided.

Documentation and user support. The documentation is extensive and includes sev-
eral useful examples. Array Systems Computing were prompt and helpful in responding to
queries.

Problems encountered. EDSA performed exactly as described in the documentation.
No problems were encountered during its use.

14.3 Sample Outputs

Figures 14-1 through 14-6 provide sample outputs from EDSA.

14-3

EDSA PART i

separate (Ll_Coampile)
package body LL_TOKENS is

procedure Advance{ eos : out BOOLEAN; next : out LLTOKEN; more : in BOOLEAN
:=TRUE) is

procedure Get_Char(char : out CHARACTER) is

begin
if End_Of Frile(Standard_Input) then

elsif End_Of_Line(Standard Ipput) then
Skip_line(Standard_Xnput);

else

Get(Standard Inmput, char);
end if;
end Get_Charx;

end Next_String;
begin

— Skip white space and comments
wvhile (current_char=ASCII.ETX) or (current_char=ASCII.HT) or (
current_char=’ ’) or (current_char=’'-’) loop
if current_char='~’ then
Look_Ahead;

Skip_Line(Standard_Input);
end if;
Char_Advance;

end loop;
1f current_char=ASCII.EOT then

elsif current_char=’"’ then
Next_string;
elsif current_char=’’’ then
Next_Character;
elsif (current_char in UPPER_CASE_LETTER) or (current_char in
LOWER_CASE_LETTER) then
Next_Identifier;
else .
Next_Spec_Sym;
end 1f;

end Advance;
end LL_TOKENS;

Figure 14-1. EDSA Threads View of Compiliation Unit LL_TOKENS

14-4

PART I

separate (L1_Compile)
package body LL_TOKENS is

procedure Advance(eos : out BOOLEAN:; next :

:=TRUR) is

procedure Next_String is
begin

while current_char/=’*’ loop

EDSA

out LLTOKEN; more : in BOOLEAN

exit when End_Of_Line(Standard_Input);

.nq loop,

e

end Next_String;
begin

- Skip white space and comments

while (current_char=ASCII.ETX) or (curreant_char=ASCII.H?) or (
current_char=’ ’) or (current_char=’'~’) loop

{f current_char='~’ then

exit whan look_char/=’'-’;
end if,;

end loop;

end Advance;
end LL_TOKENS,

Figure 14-2. EDSA Breaks View of Compliation Unit LL_TOKENS

14-5

fs shelites! - /bIn/csh -
mg 1f;
:\:xt.lstri“&go) v ney M.slnlgﬂm (OTNERS
B ond lhnLCMnctor.

modunllu fler {
(] 1 Lé:um"s

te g

'Mlo vl char {) or (current_cher 1
fuﬁc‘"&um: tm"m:uw 18 O1GHT 3 oF e

. ﬂ::nmm"m' e 52
: mm::lu() i= current_cher;
ond {f;
ond %hu {H
tabl 1 - . H
'gh) v‘mx 3 I.Ig:(printvalue, UITERAL):
"ulolnau to LIMnd(“Identifior *. GROUP);
mt.utmhm = m "(o ’gmmms (OTHERS<>
ond Meut_Tdeetitlors Lt - printva ®
::,‘f“"" Hext_Spec_Sys 1s
1 . :
gr ::::::u(1) cg:nw
Char M'
ihthere vers or'm/mm.m..«
mlﬂm o«m'm\enLL Advance. hex tfler.1
»nant-alternative
@
o
o
o
Figure 14-3. EDSA Screen of Statement Traversal Using Data Flow of Variable | ®
14-6
o

PART 1l EDSA
K] shelksel = /bin/csh K
" BTkt vhite space wnd coments
vhile { current_charsASCII.ETX) or gmmsm NTdoer(

.. i¢ ﬁ""‘“"‘!"" then
oxit vhen ook cher/e"-*:
skip_LineC Standsrd Input); .
ﬁvuf ' 1ine := TRUE;

. Char_Advance;

ond Yoop:
it mrrmkmr-lsm.tﬂ' then
ﬂﬂf :urnnt.dur-"' then

tr
olsif cqu{de\‘::: then
elstf { curren 10 UPPER_CASE_LETTER) or (current_cher 1n
LOWE then f

Next_Tdentifler:
slse
ya;

1f;
next.orintyalve o printvalue
leinden e ubloulu

. 1inenuaber e current_line:

o(forvard § of 2) €
>>nent-statsasn

t
m\u.‘l-(&) statesents 1
Inext-statenent

Figure 14-4. EDSA Screen of Statement Traversal Using Control Flow In Unit LL_TOKENS

14-7

EDSA PART Ui
& shelkae! - /bin/cah _)
[BTaY printvalual 17 1o currentcher:
fa2 Barabvences

cnd if:
ond 1F;
nma:urmdnr- -’ then

i “ﬁ":v"il C !,; current char:
atvaive! i
Ehum

ond 17
sise

Char
od if;
ummu {0 nm« printvalue, LITRRAL)2

c :- $o1;
m; m u.num(Standard Iaeut);

ond ¥
.rl .“uﬂ) 1 **%;

Advancs;
cablotndex 3= llﬂll(2Strimiit ", GhouP);
mt sttribute ¢ OYNERS=3>FAL SE
I Cancribstor 1 oF W‘W

22222222
JAXTIN2Y

shelRtse! - /Bin/esh

ond 1f;
wmnu [nm« printvalve, LITESAL);
1

Aext. attridute o new TREELNODE'C LIT. ANONYNOUS,
FALSE., u{n. orintvales);

ond

WM ring 1
t INTE 1 I.

mmlu(1) 1o 2%
il current char/e**’ 1
'ur t. [oed

then
:m_\tmu(1) te curront.char:

mzm Of _Line(§ 3
Sar. m..u-(tandard_Trput);

2238288

222222
JAA2IIZIZBIR

[A
aa srintve uo(1) e °%;
1+C contributor 1 of 1) EEEEEEEEEE
0t

viow lecatt

Figure 14-5. EDSA Annotations Example in Compliation Unit LL_TOKENS

14-8

PART li EDSA

9 < shalkae! ~ /bin/esh ~ R
Bl TabTetndex 1= LYFIAdU "OCher - BH
0096 ong 1f:
009? next.attribute 1o nev TREENODE(ATT, MICIVIOUS, (OTWERS=IFALSE)
0090 » FASE, FALSE. printvalue);
2099 ond 19;
aa ond Next_Cheracter;
0182 immﬁn dontifior s
J;‘“ . s INTE te 12
" i) 4 CASE_LETTER) or (currant_char a
® 1 a:‘: g l(.m))‘u current_char n SICIT) or (
. if ol
al! iﬁm\nt 1) 1o current_char;s
[3o 1o1;
1 o f;
HiH :
a:g t.,nmcu 1o LIF{n(printvaive, LITEAA);
a:g od :'. sindon :o LIFInSC “Xdontifier . ChOU);
e AONE. aEEributs o now TREENODE(IPENT, NKCNYNOUS, (OMMERSS>FALSE).
oy FALSE. primtwales);
) 0z od Hors
nn Nout_Spuc_Sye 13
0 ‘:
nM :dltnln(1) :- qwrm
ns
ng Cha, .o
3:- " srintvaive(2°) i» corremt_cher:
ﬂg od 1f; Advance;
[:54] ."'&PWM' ‘e’ then
® hm Saneribeters of 3 (laef TdoattPror(s: v EENIEENNENRNINS
:ﬂ\n tip18(2) contriduters |
fx) shelitanl - /bin/esh
[CaTeTnden 1= LTHadU "Oher ., 0P)i
0096 L AL
mwcm--mwtm.m ¢ ONERS->FALSE)
FASE,
: - :&Ru.m

precedure 1
1 =%"§5‘?§'

)

t’lo‘n‘- 1= L1P{nd(printvalm, LITEMAL)

'tr otndon 1o L1MndC “Tdentifior *. ChOW)
mmﬂm:-m C TOENT, AnCIumS. STMERS->PMSE).

FALSE . pri o)3

wd sz imttHan

2 ent_Spec_Sye 1s

:;hmlu(1) ;-‘umt_mn

Oher,
- g::tngn() ::.M

.clﬁr‘mrf'ngdy-':’ hen t
- Jo(contributer 1 of 1) EEEENLoos) NN

Contributers ouitted Prom soloction tist

M4+ 3

.. ot

W22 222222322222
SEABAARXSN2Y

éf

i

Figure 14-6. EDSA Pebbling Example in Compliation Unit LL_TOKENS

14-9

PART Il LDRA Testbed

15. LDRA Testbed

The LDRA Testbed provides both static and dynamic analysis. In static analysis, source
code is analyzed to give information on control, data, and information flow, logical com-
plexity, and procedure and variable usage. Conformance to user-weighted programming
standards is checked. Dynamic analysis capabilities provide assertion analysis and mea-
surement of test completeness in terms of subcondition, statement, branch, and Linear Code
Sequence and Jump (LCSAJ) coverage. Analysis of test data set redundancy is provided to
optimize the test effort. Identification of the test data sets that execute each line of code fa-
cilitates software modification.

15.1 Tool Overview

The LDRA Testbed was developed by Liverpool Data Research Associates. It is mar-
keted by a subsidiary company, Program Analysers Ltd., who also provide a series of train-
ing courses and consultancy services. Additional third party products are available in
Europe. The Testbed has been commercially available since 1974 and there are over 400
current licensees. It is available for eight languages (Ada, C, Fortran, Pascal, PL/M 86, PL/
1, COBOL, and Coral 66) on a wide range of operating environments. The following partial
list exemplifies the scope of this range of environments: Apollo machines under Unix, DEC
VAX under VMS, Unix, or Ultrix, IBM under CMS, DOS or TSO/MVS, Sun 3 and Sun 4
under Unix, and Hewlett-Packard under RTEA or HPUX. Using windowing capabilities, a
graphical interface is available for Sun, Apollo and, in some cases, VAX workstations. The
command line options available for the VAX/VMS and Unix environments differ. Unix us-
ers can set options to expand included files where possible, generate diagnostic printouts,
and initialize test profiles. Several additional options are provided in the VAX/VMS envi-
ronment, for example, the ability to create a log file of LDRA Testbed usage, to limit the
type of coverage monitored, and to format or pack the generated execution history.

The evaluation was performed on version 4.8.01 of the Ada testbed running on a Sun 4
under Unix. At the time of evaluation, prices for the testbed start at $12,000, depending on
the class of computer and language.

LDRA Testbed is a menu-driven tool. Its application begins with static analysis of the
software under test. This lexical and syntactic analysis produces a reference listing contain-
ing source code reformatted to LDRA Testbed reformatting standards. Reference line num-

15-1

LDRA Testbed PART Il

bers are given for each statement line. At the same time, the source code is searched for
violations to the applicable set of language standards provided with the testbed. These stan-
dards check for conformance to much of the Safe Ada Subset. Reporting on any particular
standard is optional, the user selects appropriate standards by awarding penalty marks
greater than zero for violations; the static analysis produces a total penalty award for the
analyzed source code. Where appropriate, the user can also specify acceptable limits for
particular standards.

Complexity analysis is based on the control flow structure expressed in terms of basic
blocks. The complexity is reported in terms of the number and average length of basic
blocks, the number of control flow knots, and cyclomatic complexity. In addition, two ap-
proaches are used to analyze program structure. First, interval analysis reports on the reduc-
ibility of the software and degree of nesting. Second, the program structure is evaluated
against a set of user-tailorable language construct templates, an Aapproach called structured
programming verification. Two further metrics, essential knots and McCabe’s essential
complexity, are provided to report on unstructuredness. The user specifies whether com-
plexity analysis should be applied to all program units or limited to an identified set of pro-
gram units. Kiviat diagrams are provided for reporting of the various complexity and
structure metrics. These diagrams allow diagramming multiple metrics simultaneously,
each with its achieved and user-defined upper and lower bounds.

The Data Flow Analyser reports procedure call information, data flow anomalies, and
procedure parameter analysis. Weak data flow analysis is applied to identify undefined data
variables and defined variables that are redefined or undefined without first referencing the
previous definition. Procedure parameter analysis classifies parameters as referenced only,
defined only, both referenced and defined, or not used; this analysis is carried out across
procedure boundaries.

Information flow analysis is a new capability that provides information on the interde-
pendencies of program variables. LDRA Testbed currently supports analysis of backwards
strong and weak dependencies on a procedure-by-procedure basis. This capability can be
used in two ways. First, as a source of documentation, for example, to support identifying
the consequences of a software change. Secondly, the user can s;iecify information flow de-
pendency assertions as special comments. The testbed then compares the expected depen-
dencies with actual dependencies, reporting the results.

The Cross Referencer performs a complete cross-reference of all data items used in a
program. The type of each data item is classified as global, local, or parameter. For each

15-2

- -

rF oo T e T — -w

PART Il LDRA Testbed

procedure, the referencer also identifies all other procedures that this procedure calls, and
all procedures that call this one.

LCSAJ analysis is the final type of static analysis provided. It aids the user in isolating
LCSAIs by highlighting, on a source code listing, the start and finish of the linear code se-
quence of each LCSAJ. Unreachable LCSAIJs, and any other unreachable code statements,
are indicated.

The Dynamic Analyser instruments source code with probes which, upon execution,
write information to an execution history file. This is usually done by writing to the host
disk at run time. To allow for host/target computer configurations, however, the instrumen-
tation can be adapted to channel the execution history generated by the instrumented target
image back to the host and stored for subsequent analysis. This may be achieved by using
a spare serial line. Alternatively, it may be possible to arrange for storage of the execution
history using an area of memory on the target, with this buffer subsequently uploaded to
the host.

After instrumentation, the user compiles and links the instrumented program in the usu-
al way. For simple programs, the resulting executable can be run under control of LDRA
Testbed, which queries the user for the names of input and output streams. Alternatively,
the program can be executed independently of the testbed. In either case, after the program
has run, the user invokes the Dynamic Coverage Analyser to anélyze the generated execu-
tion history and provide a name for the current test data set. The coverage analyzer takes
account of the results of previous test data sets to accumulate the execution coverage over
a series of test runs. (The user has no direct control over adding an execution history to the
accumulated coverage data; this is handled automatically.) For each of subcondition, state-
ment, branch, and LCSAJ coverage, the analyzer provides a list of the respective items con-
tained in the program and identifies the old, new, and total coverage percentage achieved
for each item. Unexecuted items are identified. In each case, this is followed by a summary
that reports the total number of executable statements, branches, or LCSAJs, as appropri-
ate, the number that were executed, the number not executed, and the corresponding test
effectiveness metric.

The user may request a dynamic trace to explicitly show the flow of control resulting
from the test data set. This trace may be limited to specified procedures, or to between a
user-specified range of code line numbers. The LDRA Testbed will override this request if
the resulting display will be too large.

15-3

LDRA Testbed PART Il

The testbed uses three Test Effectiveness Ratio (TER) metrics to report on the effec-
tiveness of the test data:

» TER1 = Number of statements exercised at least once / Total number of statements

» TER2 = Number of branches exercised at least once / Total number of branches

« TER3 = Number of LCSAJs exercised at least once / Total number of LCSAJs
In terms of coverage, TER3 lies between branch and path coverage. That is, LCSAIJs pro-
vide a measure that is more stringent than branch coverage without incurring the overhead
of path coverage. Additionally, LDRA Testbed reports the number of overlapping LCSAJs
containing each reformatted statement as the “density.” This figure can be used as a mea-
sure of the complexity encountered when reading or modifying the program.

When a program contains tasks, the generated execution history will contain the inter-
leaved execution histories of those tasks, LDRA Testbed can distinguish between these
multiple histories, but some special user actions are required to assist in the processing of
the separated histories.

The user can embed assertions in Ada comments. These special comments can be used
to specify pre- or post-conditions applying to a section of code, check that inputs satisfy
predetermined ranges, or check that loop and array indices are within bounds. When con-
formance checking is switched on, the testbed translates the special comments to execut-
able code and inserts a user-tailorable failure handling routine. The supplied failure
handling routine simply prints a message identifying the failing assertion and then raises a
fail exception. It is the user’s responsibility to determine appropriate assertion conditions
and to ensure that the assertions are positioned where valid executable statements are al-
lowed in the source code. The assertion format and, to some extent, syntax and semantics
are tailorable via means of a parameter file.

Two final capabilities provide some limited support for regfession analysis. A Profile
Analyzer is provided to compare the coverage profiles generated by a series of test data
sets. It identifies any data set(s) that are redundant, that is, those that do not contribute to
increasing the overall coverage. Where two or more redundant test data sets are identified,
LDRA Testbed will recommend removal of the one that generates the largest execution his-
tory. For each executable line of code, the Dynamic Data Set Analysis option identifies the
test data set(s) that execute that line. This allows the user to determine which test data sets
are affected by a modification and, therefore, the tests that must be repeated.

15-4

PART Il LDRA Testbed

The results of testbed analysis are examined using a viewing option. They can be
viewed at either the compilation unit level or system level (that is, for the full set of com-
pilation units). Various textual displays are available or the user may access a submenu of
graphical displays. Navigation through textual displays is command driven. Graphical dis-
plays are available as bar charts of complexity and coverage measures, Kiviat diagrams of
quality metrics, flowgraphs of the software control flow graph, and call-trees showing the
procedure hierarchy. Static and dynamic views of both call-trees and flowgraphs are avail-
able. The static control flow graph can be annotated with the results of coverage analysis.
In addition, the user can request an active flowgraph that illustrates the execution achieved
by the last test data set. Navigation through the graphical displays is provided via selection
from a set of icons that support such functions as automatic zboming and printing a screen.

15.2 Observations

Ease of use. Overall, LDRA Testbed is very easy to use and provides a broad range of
testing facilities. It automates all repetitive tasks and requires no redundant user input; for
example, a special script is provided to facilitate testing of software composed of many
source modules in separate files. This script, called tbset, allows a user to associate a name
with a set of files and manipulate, list, and select sets. LDRA Testbed can be invoked from
thset to apply user-selected testbed operations to a chosen set of files as a group. In this
mode, however, some usual testbed options are not available; in particular, the user cannot
limit processing to a named set of files or limit reporting to a named set of program units.
In addition, only system-wide analysis results, a call-tree display, and a variety of flow
graphs are available for viewing. (To access results for particular software units, the user
can view results through the testbed directly.) If necessary, tbset allows the user to spawn
a shell script for non-testbed related processing.

The Management Summary report provides useful high-level information on the qual-
ity of the software and on the effectiveness of testing to date. More detailed information is
provided in a series of analysis reports, some of which are very lengthy. While some users
may find the provision of multiple alternative complexity measures useful, others will find
much of this information redundant.

Graphical outputs are available on Sun, Apollo, HP, IBM RS6000, VAX, and most oth-
er types of workstations with windowing capabilities, histograms drawn in orthographic
projection are available for any terminal supporting VT 100 graphics. These histograms are

15-5

e ——————————————————————

LDRA Testbed PART I

used to profile coverage information and summarize information on the program quality,
complexity and structuredness. Full color is available for graphical displays. All graphics
displays can be exported as Postscript files.

Documentation and user support. The supplied documentation is well-written and
comprehensive. It includes a standard interface file to facilitate using LDRA Testbed out-
puts as inputs to other tools. This file allows testbed information to be viewed at three lev-
els: procedure/function, source module, and project (that is, some related set of source
modules). Through this interfacing facility, LDRA Testbed has been used with StP, Team-
work, Typhoon, System Engineer, Mascot, Infomix, and ASA CASE tools, and with the
TBGEN testing tool.

In all instances, the staff at Program Analysers were helpful and friendly and provided
quick resolution of encountered problems.

Instrumentation overhead. Full instrumentation of the Ada Lexical Generator for
statement, branch, and LCSAJ coverage gave a source code increase of nearly 100%. The
size of the instrumented executable program increased approximately 12%. The user can
limit the amount of instrumentation performed by requesting monitoring of only statement
coverage, or only statement and branch coverage. Since the user specifies the files which
are to be instrumented, instrumentation can be restricted to specific compilation units. It
cannot, however, be limited to specific program units within a compilation unit.

Ada restrictions. The LDRA Testbed supports full Ada. However, the documentation
lists the following constraints for version 4.8.01 of the Testbed:.

« For static analysis and cross-referencing: (1) The use of generics may not be correctly
Landled in some cases, (2) Analyses are limited to variables in the current module, (3)
Overloaded procedures may cause misleading messages about recursion, and (4)
Some combinations of literal procedure parameters are incorrectly analyzed.

» Calls between procedures in package bodies are only handled if their declaratives
appear textually before use.

» Incorrect branches are generated for certain nested select statements.

* In the case of information flow analysis, strongly-defined variables may be miscate-
gorized in the presence of exception handlers.

+ The analysis may be incorrect for loops implementing recursive functions of degree
greater than two.

Problems encountered. Difficulties encountered in installing an earlier version of the
testbed have been resolved. LDRA Testbed performed as described in the documentation.

15-6

e e —

PART i LDRA Testbed

15.3 Planned Additions

Currently under beta testing, dynamic data flow testing for Ada is expected to become
available in autumn 1992. Also under development are system-wide data flow analysis and

the assessment and reporting of reliability metrics.

15.4 Sample Outputs

Figures 15-1 through 15-19 provide sample outputs from LDRA Testbed.

15-7

LDRA Testbed PART i

R AN R AR RN RN AR AT TN AR RN R AN RSN RN RN AR SN N AR AR TR EARNER

TRNRRRRREW TARRRTRNEW
RRTRARRRAW MANAGEMENT SUMMARY [T TITITY
RARRARRRNW [T I S

AR AN R R R RN R R RN R R R R A RN IR AN R RN AN N RN N R RN TR AT RPN RN RN RN RN

TESTBED VERSION : 4.8.01
FILE UNDER TEST : adalex_dir_3/11 compile.a
DATE OF ANALYSIS : Mon Oct 12 11:53:18 EDT 1992

STANDARDS VIOLATIONS IN STATIC ANALYSIS

LINE PENALTY

NUMBER VIOLATION MARK
a8 1-0 package 1
82 USE clause 1
82 I-0 package 1
as Exception declaration 1
88 Number Daclaration b3
95 Predefined language environment name "INTEGER" 1

688 Identical name in scope "TESTSYNCH® 1
694 Predefined language environment name "INTEGER” 1
695 Identical name in another scope "I® 1
695 Predefined language environment name "INTEGER®" 1
744 Predefined language environment name "FALSE® 1
752 Raise statement 1
782 Predefined language enviromment name *TRUE" 1
797 Predefined language environment name "TRUE" 1

TOTAL PENALTY FROM STATIC ANALYSIS = 135
TOTAL NUMBER OF LINES IN PROGRAM = 868

SUMMARY OF EXECUTABLE BODIES :

START NO OF

NAME LINE LINES
LLFIND 152 2
LLPRTSTRING 179. 10
LLPRTTOKEN 194 1
LLSKIPTOKEN 210 10
LLSKIPNODE 225 12
LLSKIPBOTH 244 13
LLPATAL 262 9
GET_CHARACTER 278 14
CVT_STRING 307 10
MAKE_TOKEN 318 66

Figure 15-1. LDRA Testbed Management Summary for LL_COMPILE

15-8

PART I LDRA Testbed

LLNEXTTOKEN 400 8
BUILDRIGHT 455 66
BUILDSELECT 527 8
READGRAM 537 39
ERASE 587 14
MATCH 630 17
EXPAND 639 47
SYNCHRONIZE 697 62
TESTSYNCH 761 15
PARSE 778 75
LIMAIN 855 7
LL_COMPILE 864 5

THERE ARE 1 UNREACHABLE LCSAJS
THE MAXIMUM LCSAJ DENSITY IS 16 AT LINE 458

THERE ARE 1 SEQUENCES OF UNREACHABLE CODE
THE LONGEST IS 32 LINES AT LINE 167

THE TOTAL NUMBER OF UNREACHABLE LINES IS 10
THERE ARE 7 UNREACHABLE BRANCHES

1COMPLEXITY ANALYSIS PRODUCES THE FOLLOWING TABLE OF RESULTS

EXEC. BASIC AVG. ORDER 1 MAX ORDER E
PROCEDURE LINES BLOCKS LEN. INTERV. INTERV. REDUC. MCCABE KNOTS MCCABE KNOTS
LL_COMPILE 27 1 37.00 1 1 YES 1 0 1 0
LLPIND 22 13 1.62 3 2 YES 5 14 4 6
LLPRTSTRING 10 5 .00 2 2 TES 3] 3 2
LLPRTTOKEN 10 4 2.50 1 1 YES 2 1 1 0
LLSKIPTOKEN 10 1 10.00 1 1 YES 1 0 1 0
LLSKIPNODE 12 1 12.00 1 1 YES 1 0 1 0
LLSKIPBOTH 13 1 13.00 1 1 TS 1 0 1 0
LLPATAL 9 2 4.50 1 1 YES 1 0 1 0
GET_CHARACTER 14 6 2.3 1 1 YES 3 2 1 0
MAKE_TOKEN 68 17 4.00 1 1 YES 11 20 1 0
LLNEXTTOKEN L] 3 3.67 1 1 YES 2 0 1 0
LIMAIN 14 1 14.00 1 1 YES 1 0 1 0
CVE_STRING 10 7 1.43 2 2 YES 3 a 1 0
READGRAM 38 14 an 5 3 RS 6 5 1 0
PARSE 73 a3 3.17 2 2 YES 11 1 1 0
BUILDRIGH? 62 a0 3.10 3 2 TES 10 30 8 26
BUILDSELECT 8 4 2.00 2 2 YES 2 1 1]
ERASE 11 6 1.83 2 3 YES 3 4 3 4
EXPAND 43 13 2.87 4 2 YES 7 2 1 0
TRESTSYNCH 14 7 2.00 3 2 TES 3 2 1 0

Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE

15-9

@
LDRA Testbed PART I
-)
MATCH 16 9 1.78 2 2 YES 4 9 4
SYNCHRONIZE 59 23 2.57 7 3 YES 9 11 4
TOTAL 550 183 3.01 23 3 YE®S 69 116 21 S
THE PROGRAM CONTAINS 42 PROCEDURES
1STANDARDS VIOLATIONS IN COMPLEXITY ANALYSIS .
PROCEDURE VIOLATION PENALTY
LLFIND CONTAINS ESSENTIAL KNOTS 1
LLPRTSTRING CONTAINS BSSMIA_L KNOTS 1
MAKE_TOKEN MCCABE MEASURE GREATER THAN 10 1
PARSE MCCABE MEASURE GREATER THAN 10 1 o
BUILDRIGHT CONTAINS ESSENTIAL KNOTS 1
ERASE CONTAINS ESSENTIAL KNOTS 1
MATCH CONTAINS ESSENTIAL KNOTS 1
SYNCHRONIZE CONTAINS ESSENTIAL KNOTS 1
TOTAL PENALTY PFROM COMPLEXITY ANALYSIS = 8
1DATA FLOW ANALYSIS RESULTS .
1 VARIABLES WERE DECLARED BUT NEVER USED
40 TYPE UR ANOMALIES FOUND
17 TYPE DU ANOMALIES FOUND
41 TYPE DD ANOMALIES POUND
1DYNAMIC COVERAGE ANALYSIS REPORT .
PROFILES INCLUDED FOR THE POLLOWING TEST DATA SETS
1) testl.lex
2) sample.lex
DYNANIC ANALYSIS WARNINGS . .
8 MISSING LINEAR CODE SEQUENCE AND JUNP TRIPLES
6 MISSING BRANCHES
1STATEMENT EXECUTION EISTORY SUMMARY
EXECUTABLE NUMBER EXECUTED TER 1 @
STATEMENTS OLD NEW TOTAL OLD NEW TOTAL
LL,_ COMPILE 27 27 a7 27 1.00 1.00 1.00
LLFIND 17 16 17 17 0.94 1.00 1.00
LLPRTSTRING 10 0 0 0 0.00 0.00 0.00
LLPRTTOKEN 10 0 0 0 0.00 0.00 0.00
LLSKIPTOKEN 10 0] 1] 0.00 0.00 0,00 .
Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE Y
15-10
o

———————————————————n)

PART i LDRA Testbed

LLSKIPNODE 12 0 0 0 0.00 0.00 0.00
LLSKIPBOTH 13 0 0 0 0.00 0.00 0.00
LLFATAL 8 0 0 4 0.00 0.00 0.00
GET_CHARACTER 14 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 67 0 0 0 0.00 0.00 0.00
LLNEXTTOKEN 8 8 8 8 1.00 1.00 1.00
LIMAIN 14 14 114 14 1.00 1,00 1.00
CVT_STRING 9 0 0 0 0.00 0.00 0.00
READGRAM 38 38 38 38 1.00 1.00 1.00
PARSE 73 56 56 56 0.77 0.77 0.77
BUILDRIGHT 62 54 .54 54 0.87 0.87 0.87
BUILDSELECT 8 8 8 8 1.00 1.00 1.00
ERASE 11 11 11 1 1.00 1.00 1.00
EXPAND 43 38 38 38 0.88 0.88 0.88
TESTSYNCH 14 0 0] 0.00 0.00 0.00
MATCH 15 13 13 13 0.87 0.87 0.87
SYNCHRONIZE 57 0 0 0 0.00 0.00 0.00
TOTAL 540 283 204 284 0.52 0.53 0.53
SUB-CONDITIONS SUMMARY
NUMBER EXECUTED TER CON

SUB—-CONDITIONS OLD NEW TOTAL OLD NEW TOTAL
LL_COMPILE PROCEDURE CONTAINS NO SUB-CONDITIONS
LLFIND PROCEDURE CONTAINS NO SUB-CONDITIONS
LLPRTSTRING PROCEDURE CONTAINS NO SUB—CONDITIONS
LLPRTTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPNODE PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPBOTH PROCEDURE CONTAINS NO SUB-CONDITIONS
LLFATAL PROCEDURE CONTAINS NO SUB~CONDITIONS
GET_CHARACTER PROCEDURE CONTAINS NO SUB-CONDITIONS
MAKE_TOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
BUILDRIGHT PROCEDURE CONTAINS NO SUB-CONDITIONS
BUILDSELECT PROCEDURE CONTAINS NO SUB-CONDITIONS
ERASE PROCEDURE CONTAINS NO SUB-CONDITIONS
EXPAND 8 8 8 8 1.00 1.00 1.00
TESTSYNCH PROCEDURE CONTAINS NO SUB-CONDITIONS
MATCH 4 4 4 4 1.00 1.00 1.00
SYNCHRONIZE 12 0] 0 0.00 0.00 0.00
TOTAL a4 12 12 12 0.50 0.50 0.50

Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE

15-11

LDRA Testbed PART il

1BRANCH EXECUTION HISTORY SUMMARY

NUMBER EXECUTED TER 2
BRANCHES oLD NEW TOTAL OLD NEW TOTAL
LL_COMPILE 13 13 13 13 1.00 1.00 1.00
LLFIND 34 11 12 12 0.32 0.35 0.35
LLPRTSTRING 9 0 0 0 0.00 0.00 0.00
LLPRTTOKEN 9 0 0 0 0.00 0.00 0.00
LLSKIPTOKEN 2 0 0 0 0.00 0.00 0.00
LLSKIPNODE 3 0 0 0 0.00 0.00 0.00
LLSKIPBOTH 3 0 0 0 0.00 0.00 0.00
LLFATAL 3 0 0 0 0.00 0.00 0.00
GET_CHARACTER 7 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 31 0 0 0 0.00 0.00 0.00
LLNEXTTOKEN 5 4 4 4 0.80 0.80 0.80
LIMAIN 5 5 S 5 1.00 1.00 1.00
CVT_STRING 7 0 0 0 0.00 0.00 0.00
READGRAM a0 20 20 20 1.00 1.00 1.00
PARSE 39 25 a5 25 0.64 0.64 0.64
BUILDRIGHT 26 22 22 22 0.85 0.85 0.85
BUILDSELECT 4 4 4 4 1.00 1.00 1.00
ERASE 7 7 7 7 1.00 1.00 1.00
EXPAND 1s 15 15 15 0.83 0.83 0.83
TESTSYNCH 11 0 0 0 0.00 0.00 0.00
MATCH h & 7 7 ? 0.64 0.64 0.64
SYNCHRONIZE 26 0 0 0 0.00 0.00 0.00
TOTAL 292 133 134 134 0.46 0.46 0.46
1LCSAT EXECUTION HISTORY SUMMARY .
NUMBER EXECUTED TER 3
LCSAJS oLD NEW TOTAL OoLD NEW TOTAL
LL_COMPILE 13 13 13 13 1.00 1.00 1.00
LLYIND 3¢ 10 11 11 0.29 0.32 0.32
LLPRTSTRING 10 0 0 9 0.00 .00 0.00
LLPRTTOKEN 13 0 0] 0.00 0.00 0.00
LLSKIPTOKEN 3 0 0 0 0.00 .00 0.00

Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE

15-12

PART Il LDRA Testbed
LLSKIPNODE 3 [} 0 1] 0.00 0.00 0.00
LLSKIPBOTH 3 0 0 0 0.00 0.00 0.00
LLFATAL 2 0 0 0 0.00 0.00 0.00
GET_CHARACTER 6 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 33 0 0 0 0.00 0.00 0.00
LILNEXTTOKEN 7 3 3 3 0.43 0.43 0.43
LIMAIN 5 5 5 5 1.00 1.00 1.00
CVT_STRING g 0 ° 0 0.00 0.00 0.00
READGRAM 25 20 20 20 0.80 0.80 0.80
PARSE 34 23 23 23 0.68 0.68 0.68
BUILDRIGHT 32 24 24 24 0.75 0.75 0.75
BUXILDSELECT S 4 4 4 0.80 0.80 0.80
ERASE 8 7 7 7 0.88 0.88 0.88
EXPAND 20 15 15 15 0.75 0.75 0.75
TESTSYNCH 12 0 0 0 0.00 0.00 0.00
MATCH 12 6 6 6 0.50 0.50 0.50
SYNCHRONIZE 3s 0 0 0 .00 0.00 0.00
TOTAL 326 130 131 131 0.40 0.40 0.40
1SUMMARY OF EFFECT OF CURRENT TEST DATA SET ON THE COVERAGE METRICS

PROCEDURE NAME TER 1 TER 2 TER 3
LL_COMPILE 1.00 1.00 1.00
LLFIND Increaged Increased Inorsased
LLPRTSTRING No Change No Change No Change
LLPRTTOKEN No Change No Change No Change
LLSKIPTOKEN No Change No Change No Change
LLSKIPNODE No Change No Change No Change
LLSKIPBOTH No Change No Change No Change
LLFATAL No Change No Change No Change
GET_CHARACTER No Change No Change No Change
MAKE_TOKEN No Change No Change No Change
LLNEXTTOKEN 1.00 No Change No Change
LLNAIN 1.00 1.00 1.00
CVT_STRING No Change No Change No Change
READGRAM 1.00 1.00 No Change
PARSE No Change No Change No Change
BUILDRIGHT No Change No Change No Change
BUILDSELECT 1.00 1.00 Ko Change
ERASE 1.00 1.00 No Change
EXPAND No Change No Change No Change
TESTSYNCH No Change No Change No Change
MATCH No Change No Change No Change
SYNCHRONIZE No Change No Change No Change

Figure 15-1 continued: LDRA Testbed Management Summary for LL_COMPILE

15-13

LDRA Testbed PART Il

Lesthed Graphies Output

Program name: 11_compile
Results produced oo: Moo Oct 12 11:53:35 1992 Using: ADA Testbed Version 4.8.01
Priat date: Mon Oct 12 12:29:54 1992 © LDRA. 192

Static call tres of program : ll_coapile

Figure 15-2. LDRA Testbed Static Call Tree of LL_COMPILE

15-14

LDRA Testbed

PART i

Using: ADA Testbed Version 4.8.01
©LDRA. 1992

Program name: 1l_compile

Results produced oa: Mon Oct 12 12:17:01 1992
Print date: Mon Oct 12 12:30:05 1992

pile

: 11_com,

Dynamic call tree of program

Figure 15-3. LDRA Testbed Dynamic Call Tree of LL_COMPILE

15-15

LDRA Testbed PARTII

PROCEDURE CALL INFORMATION

THE MAIN PROGRAM
BETWEEN LINES 31 AND 868
LL_CONPILE

CALLS THE POLLOWING PROCEDURES
LLMAIN

PROCEDURE
LLFIND
BETWEEN LINES 146 AND 174

DOES NOT CALL ANY INTERNAL PROCEDURES
IS CALLED BY THE FOLLOWING PROCEDURES

MAKE_TOKEN
PARSE

PROCEDURE
LLPRTSTRING
BETWEEN LINES 176 AND 188

DOES NOT CALL ANY INTERNAL PROCEDURES

1S CALLED BY THE FOLLOWING PROCEDURES
LLPRTTOKEN

LLSKIPNODE

LLSKIPBOTH .
SYNCHRONIZE

1

THE FOLLOWING VARIABLES WERE DECLARED BUT KEVER USED
VARIABLE DECLARED ON LINE

TABLEINDEX 453

Figure 15-4. LDRA Testbed Data Flow Analysis of LL_COMPILE

15-16

T

PARTII

TYPE UR ANOMALIES

LDRA Testbed

866 IN PROCEDURE LIMAIN
866 IN PROCEDURE LIMAIN

866 IN PROCEDURE LLMAIN

866 IN PROCEDURE LLMAIN

866 IN PROCEDURE LLMAIN

VARIABLE UNDEPINE REFERENCE
* GLOBAL' STANDARD_ERROR

180 180
' GLOBAL’ STANDARD_FRROR

200 200
RHSARRAY 436 859 IN PROCEDURE PARSE
' GLOBAL’ LLTABLESIZE

136 136
LLSYNBOLTABLE

136
LLEOTOKS 132
LLCURTOK . PRINTVALUE

135
LLCURTOK . TABLEINDEX

135
LLCURTOK . LINENUMBER

135
LLCURTOK . ATTRIBUTE

135

866 IN PROCEDURE LLNAIN

TYPE DU ANOMALIES
VARIABLE DEPINE

UNDEFINE

CHILDCOUNT 457
I 529
LOCOFANY 708
PRODUCTIONS 857 IN PROCEDURE READGRAM
RHSARRAY 857 IN PROCEDURE READGRAM
THISRHS 857 IN PROCEDURE READGRAM
LLSTACK.DATA 866 IN PROCEDURE LLMAIN
LLSTACK . ATTRIBUTE

866 IN PROCEDURE LLMAIN
LLSTACK. PARENRT

866 IN PROCEDURE LLMAIN
LLSTACK. TOP 866 IN PROCEDURE LLMAIN
LLSTACK . LASTCHILD

866 IN PROCEDURE LIMAIN
LLSYMBOLTABLE

866 IN PROCEDURE LLMAIN

LLSENTPIR 866 IN PROCEDURE LLMAIN
LLLOCEOS 866 IN PROCEDURE LIMAIN
LLADVANCE 866 IN PROCEDURE LLMAIN

520
332
852
861
861
861
868

Figure 15-4 continued: LDRA Testbed Data Flow Analysis of LL_COMPILE

15-17

LDRA Testbed PART Il ®
b1
TYPE DD ANOMALIES @
VARIABLE DEFINE REDEFINE
LLTOP 598 594
LLSTACK. LASTCHILD
669 61
LLSTACK.TOP 669 671
L
LLSTACK.ATTRIBUTE
784 785
LLSTACK.DATA 764 785
LLSTACK . LASTCHILD)
785 786
LLSTACK. TOP 785 786
LLSTACK. PARENT PY
785 786
LLSTACK.ATTRIBUTE
785 786
LLSTACK.DATA 785 786
LLTOP 827 IN PROCEDURE EXPAND 841 IN PROCEDURE ERASE
LLADVANCE 797 827 IN PROCEDURE EXPAND
LLADVANCE 841 IN PROCEDURE ERASE 797
LLADVANCE 797 821 IN PROCEDURE TESTSYNCH ()

1

PROCEDURE PARANETER ANALYSIS

PROCEDURE LLFIND ®
PARAMETER ITEM 15 SOMETINES REFERENCED INSIDE THE PROCEDURE
PARAMETER WHICH IS SOMETINES REFERENCED INSIDE THE PROCEDURE

PROCEDURE LLPRTSTRING
PARAMETER STR IS ALWAYS REFERENCED INSIDE THE PROCEDURE

Y

PROCEDURE LLPRTTOKEN
DOES NOT HAVE ANY PARAMETERS L

PROCEDURE GET_CHARACTER

PARANETER EOS . 1S ALMAYS DEFINED INSIDE THE PROCEDURE
PARAMETER NEXT IS SOMETIMES REFERENCED

AND DEFINED INSIDE TRE PROCEDURE)
PARAMETER MORE sses: IS NOT USED IN THE PROCEDURE weerw

®

Figure 15-4 continued: LDRA Testbed Data Flow Analysis of LL_COMPILE *
15-18

®

.

—

Path Analysis

paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
paths
51 paths

- [- ¥} [
DWW OWH UMW DR Y

o0 W

Information Flow ~ Variable

PART Il LDRA Testbed
in procedure LL_COMPILE
in procedure LLFIND
in procedure LLPRTSTRING
in procedure LLPRTTOKEN
in procedure LLSKIPTOKEN
in procedure LLSKIPNODE
in procedure LLSKIPBOTH
in procedure LLFATAL
in procedure GET_CHARACTER
in procedure MAKE_TOKEN
in procedure LLNEXTTOKEN
in procedure LLMAIN
in procedure CVT_STRING
in procedure READGRAM
in procedure PARSE
in procedure BUILDRIGHT
in procedure BUILDSELECT
in procedure ERASE
in procedure EXPAND
in procedure TESTSYNCH
in procedure MATCH
in procedure SYNCHRONIZE

Dapendency Results

In Procedure LLFPIND

Strongly defined variables:

Strongly Weakly
Variable Dependent , Dependent
HIGH GLOBAL' LLTABLESILE
now GLOBAL’ LLTABLESILE

Weakly defined variables:
Strongly Weakly

Variable Dependent Dependent
MIDPOINT ’GLOBAL’LLTABLESIZE

Figure 15-5. LDRA Testbed information Flow Analysis for LLFIND

15-19

LDRA Testbed PART Il

STRUCTURED PROGRAMMING VERIFICATION WILL USE THE POLLOWING 7 STRUCTURES

SINPLE COLLAPSE
REPEAT LOOP
CASE

WHILE DO

IF THEN

IF THEN ELSE
FOR LOOP

1

AT RA R RN A RN RN AR AR R R R AN AR NN R EEN AN ARERACEANERSTNERTSONS
IQ.Il.'i'.t.'IQllt.l'.""...t't}..l.t.".l.t.'!'t."

*e L 2 4
L 1] L 3 3
" COMPLEXITY ANALYSIS FOR -
aw -l
*w L 1
e PROCEDURE LLFIND '
L 2 e
L 1] L 1]

AR N AR AN NN E R R R AN AR R EN RN AR AER AR R AN A EAARAERERNRAEAR
ARRE R R R AN RN AN AR N AR AN A RN RN AN NN R RN ANT ST AN ARARAAR

LIST OF KNOTS

FROM TO FROM T0 DOWN-DOUN UP-DOWN UpP-UP
155 172 163 869 T
185 172 165 869 T
158 172 171 155 T
157 160 159 170 T
159 170 163 869 T
159 170 165 869 T '
161 169 163 869 T
161 169 165 869 T
161 169 167 170 T
162 165 163 869 T
162 165 164 166 T
163 869 171 155 T
164 166 165 869 T
165 069 171 158 T
TOTAL NUMBER OF KNOTS - 14
NUMBER OF DOWN-DOWN KNOTS = 11
NUMBER OF UP-DOWN KNOTS =~ 3
NUMBER OF UP-UP KNOTS - 0

Figure 15-6. LDRA Testbed Complexity Analysis for LLFIND

15-20

B D A

PART i LDRA Testbed

BASIC BLOCK DISPLAY

BRANCH FROM LINE 163 JUMPS OUT OF PROCEDURE
THIS ANALYSIS WILL TREAT IT AS IF IT GOES TO LINE 174,
IMMEDIATELY AFTER THE END OF THE PROCEDURE

BRANCK FROM LINE 165 JUMPS QUT OF PROCEDURE
THIS ANALYSIS WILL TREAT IT AS IF IT GOES TO LINE 174,
IMMEDIATELY AFTER THE END OF THE PROCEDURE

LINE
NUMBER STATEMENT
146 function LLPIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) raeturn 1
147 INTEGER is 1
150 LOW, MIDPOINT, HIGH: INTEGER: 1
151 1
152 begin 1
153 LOW := 1; 1
154 HIGH := LLTABLESIZE + 1; 1
155 while LOW /= HIGH loop 2
156 MIDPOINT := (HIGH + LOW) / 2; 3
157 if ITEM ¢ LLSYMBOLTABLE(MIDPOINT).KEY then 3
158 RIGH := MIDPOINT; 4
159 elgif 4
160 ITEM = LLSYMBOLTABLE(MIDPOINT) .KEY 5
161 then 5
162 if LLSYMBOLTABLE(MIDPOINT).KIND = WHICH then []
163 return(MIDPOINT); 1
164 else 8
165 return(0); 9
166 end if; 10
167 else 10
166 ~= ITEM > LLSYMBOLTABLE(MIDPOINT).KEY 10
169 LOW := MIDPOINT + 1, 11
170 end 1if; 12
171 end loop; 12
172 return(0); — iteam is not in table 13
173 end LLPIND; 13

Figure 15-6 continued: LDRA Testbed Complexity Analysis for LLFIND

15-21

LDRA Testbed PART I

AVERAGE LENGTH OF BASIC BLOCK = 1.62 LINES

BLOCK 8 IS UNREACHABLE - REMOVE FROM FURTHER CONSIDERATION
BLOCK 10 IS UNREACHABLE -~ REMOVE FROM FURTHER CONSIDERATION

PROCEDURE ENTRY AT BASIC BLOCK 1
PROCEDURE EXIT AT BASIC BLOCK 14

KNOTS
FROM TO FRON TO . FROM TO FROM TO
BLOCK BLOCK BLOCK BLOCK LINE LINE LINE LINE
2 13 7 14 155 172 163 174
2 13 9 14 155 172 165 174
2 13 12 2 155 172 171 155
3 5 4 12 157 160 159 170
4 12 7 14 159 170 163 174
4 12 9 14 159 170 165 174
5 11 7 14 161 169 163 174
5 11 9 14 161 169 165 174
6 9 7 14 162 165 163 174
7 14 12 2 163 174 171 155
9 14 12 2 165 174 171 155

NUMBER OF BLOCK CONNECTIONS = 15
NUMBER OF BLOCKS - 12

COMPLEXITY MEASURE OF MCCABE = 5
RSN AN AR NN AR ANNARRRAANER

NUMBER OF KNOTS = 1

RN R RN RN NN RN RN R EANR AR NI AR NPENR Y

1INTERVAL ANALYSIS

INTERVALS OF ORDER 1

HEADER BLOCK 1
INTERVAL BLOCKS 1

HEADER BLOCK 2
INTERVAL BLOCKS 3 3 13 4 5 6 11 7 9 12 1a

NUMBER OF INTERVALS = 2
‘AVERAGE LENGTH OF INTERVAL = 6.00 BLOCKS

Figure 15-6 continued: LDRA Testbed Complexity Analysis for LLFIND

15-22

PART {I

INTERVALS OF ORDER 2

HEADER BLOCK 1
INTERVAL BLOCKS 1 2

NUMBER OF INTERVALS = 1
AVERAGE LENGTH OF INTERVAL = 2.00 BLOCKS

PROCEDURE REDUCIBLE IN THE INTERVAL SENSE

SRV EEERACRNEN SRR RNENP R RSN TRGIRNRRARNIUSORES

1STRUCTURED PROGRAMMING VERIFICATION

——=== CONNECTION DISPLAY ——--

BLOCK 1 COMNECTS TO BLOCKS 2
BLOCK 2 CONNECTS TO BLOCKS 3 13
BLOCK) CONNECTS TO BLOCKS 4 5
BLOCK 4 CONNECTS TO BLOCKS 12
BLOCK 5 CONNECTS TO BLOCKS 6 11
BLOCK 6 CONNECTS TO BLOCKS 7 9
SLOCK 7 CONNECTS TO BLOCKS 14
BLOCK 9 CONNECTS TO BLOCKS 14
BLOCK 11 CONNECTS T0O BLOCKS 13
BLOCK 12 CONNECTS T0 BLOCKS 3
BLOCK 13 COMNECTS T0 BLOCKS 14

THE LINES OF CODE CONTAINED IN EACH BLOCK ARE

BLOCK 1 CONTAINS LINES 146 154
SLOCK 2 CONTAINS LINES 155 155
BLOCX 3 CONTAINS LINES 156 157
SL0CK 4 CONTAINS LINES 158 159
BLOCK 5 CONTAINS LINES 160 161
BLOCK 6 CONTAINS LINES 163 162
BLOCK 7 CONTAINS LINES 163

9 COMTAINS LINES 165

8333333333313

BLOCK
BLOCK
BLOCK

BLOCK
BLOCK

BLOCK
BLOCK
BLOCK
BLOCK

LDRA Testbed

Figure 15-6 continued: LDRA Testbed Complexity Analysis for LLFIND

15-23

LDRA Testbed PART (I

~———— CONNECTION DISPLAY —-~—-

BLOCK 1 CONNECTS TO BLOCKS 2
BLOCK 2 CONNECTS TO BLOCKS 3 13
BLOCK 3 CONNECTS TO BLOCKS 4 5
BLOCK 4 CONNECTS TO BLOCKS 13
BLOCK 5 CONNECTS TO BLOCKS 6 11
BLOCK 6 CONNECTS TO BLOCKS 14

BLOCK 11 CONNECTS TO BLOCKS 12
BLOCK 12 CONNECTS TO BLOCKS 2
BLOCK 13 CONNECTS TO BLOCKS 14

THE LINES OF CODE CONTAINED IN EACH BLOCK ARE

BLOCK 1 CONTAINS LINES 146 T0 154 - BLOCK 1

BLOCK 2 CONTAINS LINES 155 T0 155 - BLOCK 2

BLOCK 3 CONTAINS LINES 156 T0 157 - BLOCK 3

BLOCK 4 CONTAINS LINES 158 TO 159 - BLOCK 4

BLOCK 5 CONTAINS LINES 160 TO 161 - BLOCK S

BLOCK 6 CONTAINS LINES 162 T0 163 - BLOCKS 6 TO 7

AND 165 TO 165 - BLOCK 9

BLOCK 11 CONTAINS LINES 169 TO 169 - BLOCK 11

BLOCK 12 CONTAINS LINES 170 T0 171 - BLOCK 12

BLOCK 13 CONTAINS LINES 172 TO0 173 - BLOCK 13

BLOCK 14 CONTAINS LINES 174 TO 174 - BLOCK 14

NO FURTHER STRUCTURE FOUND

ENOTS

FRON T0 FRON 70 FROM TO FROM T0

BLOCK BLOCK BLOCK BLOCK LINE LINE LINE LINE
2 13 6 14 155 172 162 174
2 13 12 3 155 172 171 155
3 s 4 12 157 160 159 170
4 12 6 14 . 159 170 162 174
5 11 6 14 161 169 162 174
6 14 12 3 162 174 171 1s%

ESSENTIAL KNOTS = 6
RSN ANRNARNRANNENRER

ESSENTIAL COMPLEXITY OF NCCABE = 4
RN R A NI RRN AR AR RN NN ANS RN INNR AR

PROCEDURE NOT STRUCTURED

NN ARNNBNERERORAARNTSRY

Figure15-6 continued: LDRA Testbed Complexity Anatysis for LLFIND

15-24

PART Ul LDRA Testbed
Histogram Dump
Results produced on: o date available Using: ADA Testbed Version 4.8.01
Print date: Mon Oct 12 12:24:22 1992 ©LDRA. 1992
System View : NcCabe’s Measure

Figure 15-7. LDRA Testbed System View McCabe’'s Complexity Measure

15-25

—

LDRA Testbed PARTII

P

Results produced on: o date available Using: ADA Testbed Version 4.8.01
Priot date: Mon Oct 12 12:24:27 1992 © LDRA. 1992

System Vievw : Knots

L2/

W T

Figure 15-8. LDRA Testbed System View Knots Complexity Measure

15-26

LDRA Testbed

PART I

Using: ADA Testhed Version 4.8.01
©LDRA. 1992

Kiviat Diagram

Results produced on: Moa Oct 12 11:53:31 1992
Print date: Mon Oct 12 12:30:35 1992

Xiviat Diagrams

3308 2 § & 3 § % &

seésngAgvg ganiysgagng

%388 ¢ & 3 & 3 8 ¢

Go0e0HnrgrrndAndpnidns-o

1] mmt,wmmw
i diliilie
;m*d TH _:mmm
m_ HU BT
dilililililihng

LA AR R NN R R LE R RNNN NN

Figure 15-9. LDRA Testbed Kiviat Graph for LLFIND

15-27

_

LDRA Testbed

PART Il

DETERNINATION OF LINEAR CODE SEQUENCE AND JUMP TRIPLES

START FINISH LINE
LABEL LABEL NUMBER STATEMENT
PINISH 145 1
START 146 function LLFIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) return 3
147 INTEGER is 3
148 == Trind item in symbol table —— return index or 0 if not founc
149 -— Agsumes symbol table is sorted in ascending order.3
150 LOW, MIDPOINT, HIGH: INTEGER; 3
151 3
152 begin 3
153 oW := 1, 3
154 HIGH := LLTABLESIZE + 1; 3
START FINISH 155 while 1LOW /= HIGH loop 6
156 MIDPOINT :« (HIGH + LOW) / 2: 4
FINISH 157 if ITEM < LLSYMBOLTABLE(MIDPOINT).KEY then 4
158 HIGH := MIDPOINT; 3
FINISH 159 elsif 2
START 160 ITEM = LLSYMBOLTABLE(MIDPOINT) .KEY 10
PINISH 161 then 10
FINISH 162 if LLSYMBOLTABLE(MIDPOINT).KIND = WHICH then 9
PINISH 163 return(MIDPOINT }; 8
164 else 0 UNREACE
START FINISH 165 return(0); 8
166 end if; 0 UNREACE
167 else 0 UNREACE
START 168 -~ ITEM > LLSYMBOLTABLE(NIDPOINT).KEY 1
169 LOW := NMIDPOINT + 1, 1
STARY 170 end 1if, 3
PINISH 171 end loop; 2
START FINISH 172 return(0); -— item is not in table 8
173 end LLFIND, 0 UNREACE
START 174 1
PINISH 175 1
START 176 3

procedure LLPRTSTRING(STR: LLSTRINGS) is

Figure 15-10. LDRA Testbed LCSAJ Analysis for LL_COMPILE

15-28

(

PART il

* 1LINEAR CODE SEQUENCE AND JUMP TRIPLES

START FINISH JUMP TO

LDRA Testbed

UNREACHABLE ssves

IN PROGRAM = 327

LINE LINE LINE
i 145 174
146 155 172
146 157 160
146 159 170
166 167 170
168 171 158
170 171 155
172 172 327
172 172 332
172 173 335
172 172 341
172 172 344
172 172 350
172 172 790
172 172 793
174 175 189
176 181 187
176 184 187
176 186 81
861 861 (11]
862 867 413
868 868 ~1
NUMBER OF LCSAJS
BRANCH PROM 164 TO 166
BRANCH FRON 167 TO 170
BRANCH PROM 270 TO 666
BRANCH FROM 270 TO 771
BRANCE FRON 2370 TO 851
BRANCE PROM 753 TO 756
BRANCH FROM 758 TO 775

IS UNREACHABLE
IS UNREACHABLE
IS UNREACHABLE
IS UNREACEABLE
I8 UNREACHABLE
I8 UNREACHABLE
18 UNREACHABLE

(1 UNREACHABLE)

Figure 15-10 continued: LDRA Testbed LCSAJ Analysis for LL_COMPILE

15-29

“

LDRA Testbed PART Il

ATTRIBUTE CODES
L LOCAL VARIABLE
G GLOBAL VARIABLE
P PARAMETER
16 LOCAL VARIABLE USED AS GLOBAL IN OTHER PROCEDURE

PROCEDURE LLFIND
START LINE 146 END LINE 174

CALLS NO PROCEDURES

IS CALLED BY THE PFOLLOWING PROCEDURES

NAME CALLED ON LINE
MAKE_TOKEN 328 330 333 339 342 348
PARSE 788 791

VARIABLE USAGE INFORMATION
NAME ATTRIB OCCURS ON LINE

' GLOBAL’ LLTABLESILE

G 154
HIGH L 150 15¢ 153 156 158
ITEM P 146 157 160
LLSYMBOLTABLE
G 157 160 162
Low L 150 153 155 156 169
MIDPOINT L 150 156 157 158 160 162 163 169
WHICH P 146 162

THE FOLLOWING VARIABLES HAVE ONLY ONE OCCURRENCE
NAME OCCURS ON LINE

LLCURTOK . TABLEINDEX 405
’GLOBAL’LLSTRINGS 308
’ GLOBAL' IN_FPILE s3s

I 529
/GLOBAL’ STANDARD_ERROR 661
LLCURTOK . TABLEINDEX 625
LLCURTOK.PRINTVALUE 724

Figure 15-11. LDRA Testbed Cross Reference Analysis for LLFIND

15-30

PART I LDRA Testbed

DYNAMIC COVERAGE ANALYSIS REPORT

PRODUCED BY LDRA SOFTWARE TESTBED: DYNAMIC COVERAGE ANALYSER

DYNAMIC COVERAGE ANALYSIS REPORT OPTIONS SELECTED

PROCEDURE BY PROCEDURE PRINTOUT FOR ALL PROCEDURES

TRACING OPTIONS SELECTED

NO TRACE REQUESTED

PROPILES INCLUDED FOR THE POLLOWING TEST DATA SETS

1) testl.lex
2) sample.lex

1..l."‘..*.""."l..'...l.I.I.."i!'..'."..-".'.
*ssar THE POLLOWING PROCEDURE(S) WERE ENTERED sewes
#weas UNEXPECTEDLY. USUAL CAUSE IS- raxan
annew A) MISSING LEVEL (211
wesas B) ANALYSIS OF NODULE WITH NO MASTER sewsw
*sess THIS MAY CAUSE LOCAL TRACE AND STATEMENTswwse
wesaw EXECUTION PROFILE TO BE INCORRECT suaee
R ERN R RN AN AN AN AR R RN A NN N RO NN T I A NNV ACF AR TR S
CALL PROCEDURE (MISSING LEVEL) LLFIND
RETURNING FROM LLFIND

CALL PROCEDURE (MISSING LEVEL) LLPIND
RETURNING FROM LLPIND

AMISSING LINEAR CODE SEQUENCE AND JUMP TRIPLES

START FINISR JUMPTO

LINE LINE LINE COUNT
160 163 398 130
160 163 399 90
165 165 3% b]

IMISSING BRANCHES

FROM T0
LINE LINE COUNT
163 398 130
163 399 90
165 398 2

Figure 15-12. LDRA Testbed Dynamic Analysis for LL_COMPILE

15-31

LDRA Testbed PART I

1R R SN RN R R RN AR SR A RN R R AR A RAS R IR RAR RN RE NN
RN RN AT IR AR R RN R AT E RN AN NN R AN AN TR RN EN AN ARARARN RN

4 3 R
e DYNANIC ANALYSIS FOR "
o PROCEDURE LLPIND »
e L X3

VAR RN R AN RN N AN RN RSN A AN R AR R RN RN R RN AR RN EAARERS
XA SRR R A RE R RN ER NN EA NN AR SRR RSN E R AN LSRN NI RANEERNRRNS

1STATENENT EXECUTION PROFILE

LINE
NUMBER STATEMENT
146 function LLPFIND(ITEM: LLSTRINGS; WHICH: LLSTYLE) return
147 INTEGER is
148 ~~ PFind item in symbol table -- return irndex or 0 if not found.
149 ~— Assumes symbol table ig sorted in ascending order.
150 LOW, MIDPOINT, HIGH: INTEGER;
151
152 begin

153 LOW := 1;
154 HIGH := LLTABLESIZE + 1,
155 while LOW /= HIGH loop

156 MIDPOINT := (BIGH + LOW) / 2:

157 if ITEM < LLSYMBOLTABLE(MIDPOINT).KEY then
158 HIGH 1= MIDPOINT,

159 elsif

160 ITEM = LLSYMBOLTABLE(MIDPOINT) .KEY

161 then
162 if LLSYMBOLTABLE(MIDPOINT).KIND = WHICH then
163 return(NIDPOINT);

164 else

165 return(0);

166 end 1f;

167 alse

168 —~ ITEM > LLSYMBOLTABLE(MIDPOINT).KEY
169 LOW := NIDPOINT + 1,

170 end if;

imn end loop;
172 return{ 0); -— item is not in table
173 end LLFIND;

' OLD NEW
SUMMARY COUNT COUNT TOTAL
NUMBER OF EXRECUTABDLE LINES 17 17 17
NUMBER EXECUTED 16 17 17
NUMBER NOT EXECUTED 1 0 0
TEST EPFECTIVENESS RATIO 1 0.94 1.00 1.00

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-32

PART Il LDRA Testbed

1BRANCH EXECUTION PROPILE

PROM TO OLD NEW
LINE LINE COUNT COUNT TOTAL
155 156 8ge 1422 2320
155 172 63 B8 151
157 158 429 646 1075
157 160 469 776 1245
159 170 429 646 1075
161 162 135 224 359
161 168 334 . 552 886
162 163 135 222 as?
162 165 0 wwww 2 2
163 327 0 sawsw 0D zeem 0 sees
163 332 0 anew 0D mxew 0 swes
163 335 QO ssax 0 saxa 0 muwx
163 341 0 mane 0 sewn 0 wexs
163 344 0 weew 0 wene 0 *awe
163 350 0 raew 0 axew 0 wees
163 790 1 1 2
163 793 1 1 2
165 327 0 eeew 0 axen 0 weaww
165 332 0 weaw 0 2xwn 0 *ees
165 335 0 wmuss 0 suwa 0 waww
165 341 0 eexs 0 seex 0 weaws
165 kXY g wess 0 sewe 0 wsew
165 350 0 weew 0 senx 0 wamw
165 790 g wwnw 0 eexee 0 same
165 793 0 vene 0 wens 0 eanw
17 158 763 1196 1961
172 3a7 0 wene 0 tmen 0 ress
172 332 0 sxaw 0 sens 0 exaw
172 3a8 0 rums 0 zaee 0 rase
172 341 0 wene 0 wxww 0 wense
172 344 0 rune 0 sess 0 waws
172 iso D wwes 0 snmw 0 manew
172 790 0 swaw 0 wawe 0 sEamw
172 793 0 ®ens 0 sees 0 wewns
OLD NEW
SUMMARY COUNT COUNT TOTAL
NUMBER OF BRANCHES s 34 34
NUMBER EXECUTED 11 12 12
NUMBER NOT EXECUTED a3 22 22
TEST EFFECTIVENESS RATIO 2 0.32 0.35 0.35

Figure 15-12 continued: LDRA Testbed Dynamic Analysls for LL_COMPILE

15-33

LDRA Testbed

PART Ii

THE FOLLOWING BRANCHES HAVE NOT BEEN EXECUTED BY ANY TEST DATA SET

(163, 327) (163, 332) (163, 335) (163, 341l) (163, 344) (163, 1350)
(165, 332) (165, 335) (165, 341) (165, 344) (165, 350) (165, 790)
(172, 327) (172, 332) (172, 335) (172, 341) (172, 344) (172, 350)
{ 172, 793)
MISSING BRANCHES
FROM TO
LINE LINE COUNT
163 398 130
163 399 90
165 398 2
172 398 ag
1LINEAR CODE SEQUENCE AND JUMP EXECUTION PROFILE
START FINISH JUMPTO OLD NEW
LINE LINE LINE COUNT COUNT TOTAL
146 155 172 0 Taan 0 smws 0 waew
155 155 172 63 1] 151
146 157 160 22 as 60
155 157 160 447 738 1185
146 159 170 176 34 450
155 159 170 253 372 625
160 161 168 33 552 886
160 162 165 0 ewas 2 2
160 163 27 0 twes 0 swee 0 wxex
160 163 332 0 swrs 0 meas 0 weee
160 163 335 0 wawe 0 swee 0 wawe
160 163 341 0 wanw 0 mams 0 wees
160 163 344 0 *nse 0 sews 0 tewe
160 163 350 0 wneae 0 eeee 0 »uws
160 163 790 1 1 2
160 163 793 1 1 2
165 165 327 0 waew 0 asme 0 mean
165 165 332 0 Teuw 0 wens 0 swee
165 165 335 0 ®aaw 0 esene 0 wnse
165 165 341 0 weaw 0 waew 0 wnaw
165 165 344 0 *ene 0 snan 0 sxuw
165 165 350 0 wnee 0 sees 0 wese
165 165 790 0 sxws 0 sane 0 meee
165 165 793 0 eeee 0 weese 0 =use

(165,
{ 165,
¢ 172,

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-34

LS BN R)

PARTII LDRA Testbed

168 171 155 334 552 886
170 171 155 429 646 1075
172 172 327 0 wuns 0 wamw 0 meww
172 172 332 0 wnaw 0 whsx 0 swes
172 172 3as 0 wonn 0 wxsyw 0 s=wxx
172 172 341 0 wwaw 0 *waw 0 ewesw
172 172 344 0 wmene 0 wamw 0 ewww
172 172 350 0 senw 0 wxew 0 wewx
172 172 790 Q wwan 0 saxe 0 wewx
172 172 793 0 mess 0 sase 0 swes
OoLD NEW
SUMMARY COUNT . COUNT TOTAL
NUMBER OF LCSAJS 34 34 34
NUMBER EXECUTED 10 11 11
NUMBER NOT EXECUTED 24 23 23
TEST EFFECTIVENESS RATIO 3 0.29 0.32 0.32

THE FOLLOWING LCSAJS HAVE NOT BEEN EXECUTED BY ANY TEST DATA SET

146, 155, 172)
160, 163, 344)
165, 165, 341
172, 172, 327)
172, 172, 350)

160, 163, 327)
160, 163, 350)
165, 165, 344)
172, 172, 332)
172, 172, 790)

160, 163, 332) (160, 163, 335) (160, 163,
165, 165, 327) (165, 165, 332) (165, 165,
165, 165, 350) (165, 165, 790) (165, 165,
172, 173, 335) (173, 172, 341) (172, 172,
172, 172, 793)

MISSING LINEAR CODE SEQUENCE AND JUMP TRIPLES

START FINISH JUMPTO

LINE LINE LINE COUNT
160 163 398 130
160 163 399 90
165 165 398 3
172 172 398 88

1STATEMENT EXECUTION EISTORY SUMMARY

EXECUTABLE NUMBER EXECUTED TER 1

STATEMENTS . OLD NEW TOTAL OLD NEW TOTAL
LL_COMPILE 27 27 27 27 1.00 1.00 1.00
LLPIND 17 16 17 17 0.84 1.00 1.00
LLPRTSTRING 10 0 0 0 0.00 0.00 0.00
LLPRTTOKEN 10 0 0 0 0.00 0.00 0.00
LLSKIPTOKEN 10 0] 0 0.00 0.00 0.00

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-35

LDRA Testbed PART Il
LLSKIPNODE 12 0 0 0 0.00 0.00 0.00
LLSKIPBOTH 13 0 0] 0.00 0.00 0.00
LLFATAL 8 0 0 0 0.00 0.00 0.00
GET_CHARACTER 14 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 67 0 0 0 0.00 0.00 0.00
LLNEXTTOKEN 8 8 8 8 1.00 1.00 1.00
LLMAIN 14 14 14 14 1.00 1.00 1.00
CVT_STRING 9 0 0 0 0.00 0.00 0.00
READGRANM 38 38 38 38 1.00 1.00 1.00
PARSE 73 56 56 56 0.77 0.77 0.77
BUILDRIGHT 62 54 .54 54 0.87 0.87 0.87
BUILDSELECT 8 8 8 8 1.00 1.00 1.00
ERASE 11 11 11 1 1.00 1.00 1.00
EXPAND 43 38 s 38 0.88 0.88 0.88
TESTSYNCH 14 0 0 0 0.00 0.00 0.00
MATCH 15 13 13 13 0.87 0.87 0.87
SYNCHRONIZE 57 0 0 0 0.00 0.00 0.00
TOTAL 540 283 284 284 0.52 0.53 0.53
1SUB-CONDITIONS SUMMARY
NUMBER EXECUTED TER CON

SUB-CONDITIONS OoLD New TOTAL OLD NEW TOTAL
LL_COMPILE PROCEDURE CONTAINS NO SUB-CONDITIONS
LLPIND PROCEDURE CONTAINS NO SUB-CONDITIONS
LLPRTSTRING PROCEDURE CONTAINS NO SUB~CONDITIONS
LLPRTTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPTOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
LLSKIPNODE PROCEDURE CONTAINS NO SUB~CONDITIONS
LLSKIPBOTH PROCEDURE CONTAINS NO SUB-CONDITIONS
LLFATAL PROCEDURE CONTAINS NO SUB-CONDITIONS
GET_CHARACTER PROCEDURE CONTAINS NO SUB-CONDITIONS
MAKE_TOKEN PROCEDURE CONTAINS NO SUB-CONDITIONS
EXPAND 8 8 8 8 1.00 1.00 1.00
TESTSYNCH PROCEDURE CONTAINS NO SUB-CONDITIONS
MATCH 4 4 4 4 1.00 1.00 1.00
SYNCHRONIZE 12 0 0 0 0.00 0.00 0.00
TOTAL 24 12 12 12 0.50 0.50 0.50

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-36

1BRANCH EXECUTION HISTORY SUMMARY

PART Il

LDRA Testbed

NUMBER EXECUTED TER 2
BRANCHES OLD NEW TOTAL OLD NEW TOTAL
LL_COMPILE 13 13 13 13 1.00 1.00 1.00
LLFIND 34 11 12 12 0.32 0.35 0.35
LLPRTSTRING 9 0 Q 0 0.00 0.00 0.00
LLPRTTOKEN 9 0 0 0 0.00 0.00 0.00
LLSKIPTOKEN 2 0 0 0 0.00 0.00 0.00
LLSKIPNODE 3 0 .0 0 0.00 0.00 0.00
LLSKIPBOTH 3 0 0 0 0.00 0.00 0.00
LLFATAL P 0 0 0 0.00 0.00 0.00
GET_CRARACTER 7 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 3l 0 0 0 0.00 0.00 Q.00
LLNEXTTOKEN 5 4 4 4 0.80 0.80 0.80
LLMAIN 5 5 s 5 1.00 1.00 1.00
CVT_STRING 7 0 0 0 0.00 0.00 ¢.00
READGRAM 20 20 20 20 1.00 1.00 1.00
PARSE 39 a5 as a5 0.64 0.64 0.64
BUILDRIGHT 26 22 22 22 0.85 0.85 0.85
BUILDSELECT 4 4 4 4 1.00 1.00 1.00
ERASE 7 7 7 7 1.00 1.00 1.00
EXPAND 18 13 15 15 0.83 0.83 0.83
TESTSYNCH 11 0 0 0 0.00 0.00 0.00
MATCH 1 7 7 7 0.64 0.64 0.64
SYNCHRONIZE a6 0 0 0 0.00 0.00 .00
TOZAL 292 133 134 134 0.46 0.46 0.46
1LCSAJ EXECUTION HISTORY SUMMARY .
NUMBER EXECUTED TER 3
LCSAJS OLD NEW TOTAL OLD NEW TOTAL
LL_COMPILE 13 13 13 13 1.00 1.00 1.00
LLPIND 34 10 11 11 0.29 0.32 0.32
LLPRTSTRING 10 0 0 0 0.00 0.00 0.00
LLPRTTOKEN 13 0 0 (1] 0.00 0.00 0.00
LLSKIPTOKEN 2 0] o 0.00 0.00 0.00

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-37

LDRA Testbed PART Il
LLSKIPNODE 3 0 0 0 0.00 0.00 0.00
LLSKIPBOTH 3 0 0 0 0.00 0.00 0.00
LLFATAL 2 0 0 0 0.00 0.00 0.00
GET_CHARACTER 6 0 0 0 0.00 0.00 0.00
MAKE_TOKEN 33 0 0 0 0.00 0.00 0.00
LLNEXTTOKEN 7 3 3 3 0.43 0.43 0.43
LLMAIN 5 S 5 5 1.00 1.00 1.00
CVT_STRING 9 0 0 0 0.00 0.00 0.00
READGRAM 25 . 20 20 20 0.80 0.80 0.80
PARSE 34 23 23 23 0.68 0.68 0.68
BUILDRIGHT 32 24 24 24 0.75 0.75 0.75
BUILDSELECT 5 4 4 4 0.80 0.80 0.80
ERASE 8 7 7 7 0.88 0.88 0.88
EXPAND 20 15 15 15 0.75 0.75 0.75
TESTSYNCH 12 0 0 0 0.00 0.00 0.00
MATCH 12 6 6 6 0.50 0.50 0.50
SYNCHRONIZE as 0 0 0 0.00 0.00 0.00
TOTAL 326 130 131 13 0.40 0.40 0.40
1SUMMARY OF EFFECT OF CURRENT TEST DATA SET ON THE COVERAGE METRICS

PROCEDURE NAME TER 1 TER 2 TER 3
LL_COMPILE 1.00 1.00 1.00
LLFIND Increased Increased Increased
LLPRTSTRING No Change No Change No Change
LLPRTTOKEN No Change No Change No Change
LLSKIPTOKEN No Change No Change No Change
LLSKIPNODE No Change No Change No Change
LLSKIPBOTH No Change No Change No Change
LLPATAL No Change No Change No Change
GET_CHARACTER No Change No Change No Change
MAKE_TOKEN No Change No Change No Change
LLNEXTTOKEN 1.00 No Change No Change
LLMAIN 1.00 1.00 1.00
CVT_STRING No Change No Change No Change
READGRAM 1.00 1.00 No Change
PARSE No Change No Change No Change
BUILDRIGHT No Change No Change No Change
BUILDSELECT 1.00 1.00 No Change
ERASE 1.00 1.00 No Change
EXPAND No Change No Change No Change
TESTSYNCH No Change No Change No Change
NATCH No Change No Change No Change
SYNCHRONILE No Change No Change No Change

Figure 15-12 continued: LDRA Testbed Dynamic Analysis for LL_COMPILE

15-38

PART lI

LDRA Testbed

—————
Results produced on: o date available Using: ADA Testbed Version 4.8.01
Print date: Mog Oct 12 12:44:02 1992 © LDRA. 1992

System View @

Statapent Coverage

Figure 15-13. LDRA Testbed System View Statement Coverage

15-39

LDRA Testbed PART HI

Testhed Graphics Output

Histogram Dump
Resuits produced on: o date available Using: ADA Testhed Version 4.8.01
Print date: Mon Oct 12 12:44:13 1992 ©LDRA. 192

System Viewv : Branch Coverage

Figure 15-14. LORA Testbed System View Branch Coverage

15-40

_r

PART It

LDRA Testbed

Histogram Dump
Results produced on: 0 date available Using: ADA Testbed Version 4.8.01
Print date: Mon Oct 12 12:44:21 1992 ©LDRA.1992

System Viev : Test Path (LCSAJ) Coverage

Figure 15-15. LDRA Testbed System View Test Path (LCSAJ) Coverage

15-41

LDRA Testbed PART I
Histogram Dump
Resuits produced on: on Oct 12 12:35:59 1992 Using: ADA Testbed Verxion 4.8.01
Print date: Moa Oct 12 12:46:18 1992 ©LDRA. 1992

Coverage Mstrios

Toet Puth (LCEAT) Coversge

Figure 15-16. LDRA Testbed Coverage Achieved Comparison

15-42

[PART Il LDRA Testbed

R e o

Program name: new_]1_compile
Results produced on: Thu Apr 30 13:47:41 1992 Using: Ada Testbed Version 4.8
Print date: Tue May 12 09:50:22 1992 ©LDRA.1992

Active flowgraph of procedure : READGRAM

O,
. © 0
o
Q.
)

Figure 15-17. LDRA Testbed Active Flowgraph of READGRAM

15-43

LDRA Testbed PART I

N SRR B AR R AU RSN ERN AR RSN NE NS NR SR ARSI R AN AEN R ERERRNEER
R RAR NN AN RN SRR A AR SN TR A R TR R AN RN AN E RN AN AR RRRTRD

" L 1]
ek DATA SET ANALYSIS FOR bk
e L
" PROCEDURE LLFIND =%
e (1]

R AR NN AN AR T R A AR RN AR PR AN RN A N AN USSR R RO RONENYONY
AR ENERN R RN R AR AR TN RN R S SRR AN T AR ENOR NS AR RRNGEORS

1TEST DATA SET ANALYSIS

LINE DATA SETS USED

146 testl.lex
sample.lex

162 testl.lex

sampls.lex
163 testl.lex

sample.lex
164 LT

165 sample.lex

166 L 111
167 wers
168 testl.lex
sample.lex
169 testl.lex *
sample.lex
170 testl.lex
sanple. lex
171 testl.lex
sample.lex
172 testl.lex
sample.lex
173 sens

Figure 15-18. LDRA Testbed Data Set Analysis for LLFIND

15-44

PART Il LDRA Testbed

1PROPILE ANALYSIS

LIST OF DATA SETS

1) testl.lex
2) sample.lex

ANALYSIS OF EACH DATA SET IN TURN

DATA SET 1 CONTRIBUTES NOTHING. SIZE = 44900
DATA SET 3 IS NECESSARY SIZE = 72092
DATASET RECOMMENDED FOR REMOVAL IS5 1

Figure 15-19. LDRA Testbed Profile Analysis

15-45

PART Il Logiscope

16. Logiscope

Logiscope employs the RADC quality metrics model to provide analysis of a set of
user-tailorable quality metrics at both the unit and integration levels. It provides coverage
analysis of statement blocks, branches, and LCSAJs at the unit level, and procedure-to-pro-
cedure path coverage analysis at the integration level. Additional capabilities include the
generation of control and call graphs, structure analysis, and pseudo-code generation to
support re-engineering.

Logiscope is one element of a comprehensive suite of CASE tools. AGE/ASA is a
CASE tool supporting functional specification activities. Based on IDEFO and finite state
machine specification methods, it supports simulation and various static analyses including
complexity analysis. It also provides test scenario generation for automatic production of
functional test suites which can be fed into the simulator or used during code acceptance
testing to ensure compliance with requirements. Scenario coverage can be measured during
simulation. Support for design is available through AGE/GEODE. This tool is based on the
Consulting Committee on International Telegraph and Telephone (CCITT) standardized
language Specification and Description Language (SDL) and provides for design and sim-
ulation of real-time software with automatic code and application generation. AGE/GE-
ODE also provides test process generation to allow independently testing the coherence of
a process with respect to the rest of the design prior to system integration. A new tool,
VEDA, supports simulation and validation of protocols specified in the International Orga-
nization for Standardization (ISO) standard language Estelle. Finally, DocBuilder is used
to produce software documentation that can be configured to such standards as DoD-STD-
2167A. It is based on the Standard Generalized Markup Language (SGML) ISO Standard
8879.

16.1 Tool Overview

Logiscope was developed by Verilog, a European company formed in 1984. It has been
available since 1985 and there are over 5,000 users worldwide. Logiscope is marketed in
the U.S. by Verilog, Inc., the U.S. subsidiary. This company also provides consulting and
training services, and hot-line support for tool users.

Logiscope is available for over eighty languages and dialects, including Ada, C, C++,
and Fortran. It is supported on a variety of workstations and mainframes under both Unix

16-1

Logiscope PART Il

and VMS, with graphic capabilities available through a number of windowing systems. As
with all its tools, Verilog has focused on compatibility of Logiscope with international stan-
dards such as the Portable Common Tool Environment (PCTE), SDL, etc. Logiscope can
be integrated with DecFuse, HP’s SoftBench, and Software Back Plane. It supports host/
target testing via use of a serial port between the host and target machines.

The evaluation was performed on Logiscope/Ada version 1.6.3. running on a Sun 4
workstation under UNIX and OpenWindows. At the time of evaluation, prices for Logis-
cope started at $14,000.

Logiscope consists of several parts:

« Analyzer. Processes source code to provide the data needed for the Results Editor.

« Results Editor. Takes the results file produced by the Analyzer and, potentially, the
trace file produced by an instrumented program to generate various reports.

+ Formatter. Compacts the execution trace produced by an instrumented program.

« Static Archiver. Gathers various analysis results and manages results obtained for dif-
ferent versions of the software.

» Dynamic Archiver. Accumulates resulits for a set of test runs and enables multiple test
suite management.

While the Analyzer is unique to a particular programming language, the remaining tools
are language independent. All tools operate in both interactive and batch mode.

The Analyzer operates in either static or dynamic mode, although application of Logi-
scope begins with static analysis of the software under test. The software should have pre-
viously been compiled and, where several compilation units are employed, these must be
submitted in the compilation order (this restriction applies to Ada code only). In static
mode, the Analyzer calculates the appropriate set of basic counts that will be used to as-
sesses the quality of the software under examination. In dynamic mode, it instruments
source code for instruction block, decision-to-decision path, LCSAJ coverage, or proce-
dure-to-procedure coverage. Files are instrumented individually and, potentially, for differ-
ent types of coverage measurement. Dynamic analysis also provides path and condition
identification to aid test data generation. After instrumentation, the user compiles, links,
and then executes instrumented source code as usual.

In general, the Analyzer can analyze files singly or as a group. It generates a Results
File that the Results Editor uses to generate a variety of reports. There is a facility for com-
bining separate Results Files together to form a single file for a subsystem, or system. It can
search for such items as code based on keywords, or code that falls within certain values
for a given metric or criteria.

16-2

-

PART I , Logiscope

The Results Editor also operates in static and dynamic modes, presenting results at dif-
ferent levels: details for each application component, a synthesis of component results for
the entire application, and global application architecture information.

Quality analysis is the primary static analysis function and Logiscope employs the
RADC quality metrics model to define quality measurement at three levels of abstraction.
At the lowest level of the model there are thirty five predefined primitive metrics. The user
can define upper and lower bounds for these metrics to allow Logiscope to flag out-of-
bounds values. (Verilog provides default values for these bounds that are based on their ex-
perience over time.) The user can specify algorithms to weight and combine the primitive
metrics into up to fifteen composite metrics. Then higher-level quality criteria allow clas-
sifying components based on their computed quality values. These criteria can also be used
to get an overall quality value for a module and report on final acceptance or rejection based
on this value.

Logiscope distinguishes between unit-level metrics and architectural metrics. In the
first case, McCabe’s control-oriented measures are calculated, as well as Halstead’s textu-
ally-oriented Software Science measures. At the architectural level, Logiscope uses Mo-
hanty’s metrics to calculate accessibility, testability, hierarchy complexity, structural
complexity, system testability, call graph entropy, and the number of direct calls.

Quality results are displayed using the Results Editor in static mode. In addition to the
Results File produced by the Analyzer, the editor requires a Reference File that contains the
definitions of the metrics being used. (A different Reference File can be maintained for
each project, allowing customization across development efforts.) For quality reporting at
the component level, the user can request Kiviat diagrams to show achieved metrics values
with respect to the defined limit values. These diagrams are used to display up to 30 user-
selected metrics, graphically showing those metrics that fall out-of-bounds. Metrics can be
displayed by component, or as a statistical average over a group of components. Kiviat di-
agrams can also be segmented into quadrants to provide an additional layer of abstraction.
Criteria graphs are available to display information relative to all associations between met-
rics and criteria, while showing the situation of metrics with respect to limit values. These
graphs also specify the category to which the component belongs.

At the global level, histograms of metrics distributions and criteria distributions are
available. Additionally, when there is a large number of components, the user can request
a graphical distribution for a particular interval or a distribution of components as a func-
tion of the limit values defined in the quality model.

16-3

Logiscope PART Il

Finally, a Quality Report uses the components’ classification based on the quality cri-
teria to present a summary in the form of the percentage of coraponents within the set of
limit values. This report assesses whether quality recommendations for a given criteria
have been met, or computes a statistical average over a group of components.

Also in static mode, the Results Editor generates control graphs to provide insight into
component structure and behavior, and call graphs to describe the calling relationships of
analyzed components. Control graphs can be annotated with either source or pseudocode
line numbers. Logiscope supports control graph exploration with a zoom capability and the
display of a reduced or structured form of a control graph. The reduced form can be used
to verify that a program meets the requirements of structured programming and identify el-
ements that do not conform. The principle of control graph reduction consists of represent-
ing as a single node the control structures that have only one input and one output. The most
deeply nested structures are reduced at each successive reduction stage, and the user can
terminate this process when desired. Altematively, the structured view displays the under-
lying structures expressed in combinations of if-then-else statements and branch statements
to reveal the hidden structuring of the processing. Measurements of a set of intrinsic char-
acteristics are available for initial, reduced, and structured control graphs. This allows com-
paring the set of alternative, equivalent views of a complex control graph and can help a
user to determine how to improve the program structure.

Exploration of call graphs is also provided to support the identification of critical com-
ponents at the architectural level, and of design rules that have been violated. This is
achieved by display of partial views and manipulation of call graphs, and quality evalua-
tion. A call graph can be displayed from any root, and the display limited to a view of the
root’s descendants, ascendants, or both. Components can be grouped to clarify, for exam-
ple, which components can call that set. A call graph can be limited to display of the Logi-
scope analyzed components alone.

Before the Results Editor can be used in dynamic mode for coverage reporting, the trace
file produced by the instrumented program must be formatted. Subsequently, the editor can
report on the achieved coverage at both component and global levels. At unit level, the user
can request detailed reports on instruction block, decision-to-decision path, and LCSAJ
coverage. For each type of coverage this includes a listing identifying each instance of the
instruction block, decision-to-decision path, or LCSAJ unit, supported by the conditions re-
quired to execute that instance as appropriate, and whether or not it was executed. A path
list also indicates program paths that have not been executed. Unit coverage results can be

16-4

-

PART il Logiscope

annotated on dynamic control graphs to provide easy assessment of the completeness of
unit testing. Histograms of the distribution of components as a function of coverage rate are
available for rapid assessment of coverage progression throughout testing. These histo-
grams are accompanied by a distribution list that shows the coverage achieved for each
component. This distribution list shows the number of times each test case exercised each
coverage instance and can be used to determine how well particular test cases support or

duplicate each other.

The Dynamic Archiver is used to group the results obtained for a series of tests to allow
reporting on cumulative test coverage. Here formatted trace files are grouped into named
test suites that are stored in archive files. The Results Editor can then be run on an archive
file to generate, for example, distribution histograms for the accumulated instruction block,
decision-to-decision path, and LCSAJ coverage for all components.

At the global level, the editor reports on procedure-to-procedure path coverage. Here
coverage results can be annotated on call graphs to provide quick insight into the complete-
ness of integration testing. An accompanying textual report details the calling and called
relationships for each procedure-to-procedure path and whether that path was executed. An
additional report, the coverage table, identifies the particular paths invoked by each test
case.

16.2 Observations

Ease of use. The Results Editor provides on-line help with a list of available commands
and command descriptions. Coinponents can be grouped into a workspace to facilitate op-
erating on a set of components as a whole. A broad selection of graphical output formats is
available, including histograms, tables, and pie charts.

Logiscope provides the user with considerable flexibility in defining the quality char-
acteristics that should be assessed and reported. It comes with a series of default quality
models, one for each of five different programming language. These can be used as is, the
user can tailor them to his needs, or develop his own quality model from scratch.

Documentation and user support. The documentation is extensive and easy to follow.
Verilog provided excellent user support.

Instrumentation overhead. Full instrumentation of the Ada Lexical Analyzer Gener-
ator (all components except 1l_support) gave a size increase of just over 50%.

16-5

Logiscope PART Il

Ada restrictions. Pragmas are not processed by the Analyzer. It is not possible to mea-
sure the coverage of a terminate alternative in a selective wait.

Problems encountered. The Analyzer reported an error when analyzing one compo-
nent (lI_support; of the Ada Lexical Analyzer Generator and this prevented inswumenting
this component. Initially, some problems were encountered with reporting on LCSAJ cov-

erage.

16.3 Planned Additions

Version 3.2 of Logiscope with a Common OSF/MOTIF graphical user interface was re-
leased in fall 1992. This new version is menu driven and supports navigation between
source code (or pseudocode) and graphs. Multiple, integrated windows are simultaneously
available to provide a user with multiple perspectives of a single software component. In
this new version, Logiscope is integrated with DocBuilder to provide automatic documen-
tation of new or existing code. Meanwhile, Verilog is working to integrate Logiscope with
various configuration management tools.

A companion tooi which focuses on data flow analysis rather than control flow analysis
is under development.

16.4 Sample Outputs

Figures 16-1 through 16-28 provide sample outputs from Logiscope.

16-6

Logiscope

PART Ul

aNi477 uoniound jo ydesn jonuoy adoosiBon L-91 ainbiy

WEOALINI : uIN3oX :ITLLETT SONTULSTTL: ANIJTT/ ATIAR0D T1
:jueucdwos jo Yydexb joajuod

TA SUOTNISA
¥ay :ebenbuwy oIw 11% :uojivojrddy
§ = (B)A

~

- N s

16-7

Logiscope PART I

Begin
2 ADA_statement(s);
While LOW /= HIGH Do
1 ADA_statement(s);
If ITEM < LLSYMBOLTABLE(MIDPOINT).KEY Then
1 ADA_statement(s);
Elsif pot (ITEM < LLSYMBOLTABLE(MIDPOINT).KEY) and (ITEM =
LLSYMBOLTABLE(NIDPOINT) .KEY) Then
If LLSYMBOLTABLE(MIDPOINT).XIND = WHICH Then
Exit of Subprogram;
Else
Exit of Subprogram;.
end If;
Else
1 ADA_statement(s);
End I1f;
End of while;
End;

Text of component:
LL_COMPILE/LLFIND:LLSTRINGS : LLSTYLE: return: INTEGER

Application: all_axc

Version: vl
Language: ADA
rile : 11_compile.a

Figure 16-2. Logiscope Textual Representation of Control Graph of Function LLFIND

16-8

PART I Logiscope

Basic counts of component :
LL_COMPILE/LLFIND:LLSTRINGS:LLSTYLE:xeturn: INTEGER

Number of comments
Number of jump statements

Number of statements 11 !
|
Number of different operators | 13
l
l

|
Number of labels | 0
Total number of operators | 29
|
I

Total number of operands 28 | Number of different operands 11

Total number of calls 0 Number of different calls 0

Operators | Nbr .| Operators | Nbr |
() exp | 4| = | 2 |
() tab | 3 | ELSE | 2|
+ | 3 | ELSIF THEN } 1|
/ | 1| IF THEN .. END IF] 2 |
/=] 1 | RETURN i 3|
- | S | WHILE LOOP .. END LOOP | 1
< | 1| ! |
Operands | Nbr | Operands | Nbxr |
0 | 2 | LLSYMBOLTABLE(.).KIND | 1 |
1 ! 3 | LLTABLESIZE l 1
2 | 1| oW | 4|
HIGH | 4 | MIDPOINT | 7 |
ITEM | 2 | WHICH] 1|
LLSYMBOLTABLE(.) .KEY | 2 | | |

Figure 16-3. Logiscope Basic Counts for Function LLFIND

16-9

Logiscope PART I

21 with LL_DECLARATIONS, INTEGER_TEXT_ IO, TEXT_XO;
22
23 procedure LL_COMPILE is

161 function LLFIND (ITEM : LLSTRINGS; WHICH : LLSTYLE) return INTEGER is

162 —— Find item in symbol table —- return index or 0 if not found.

163 -~ Assumes symbol table is sorted in ascending order.

164

165 LOW, MIDPOINT, HIGH : INTEGER;

166

167 begin (* DDP 1 Begin =)
168

169 LOW := 1;

170 HIGH := LLTABLESIZE + 1;

i1 while LOW /= HIGH loop (* DDP 2 While »)
172 MIDPOINT := (HIGH + LOW) / 2;

173 if ITEM < LLSYNBOLTABLE (MIDPOINT).KEY then (* DDP 3 If *)
174 HIGH := MIDPOINT;

175 elgif ITEM = LLSYMBOLTABLE (MIDPOINT).KEY then (* DDP 4 Else -
176 (* DDP 5 Else-Ifw)
177 if LLSYMBOLTABLE (MIDPOINT).KIND = WHICH then (* DDP 6 If *
178 return (MIDPOINT);

179 else (* DDP 7 Else *)
180 return (0);

181 end if;

le2 elae (* DDP 8 Else *)
183 --= ITEM > LLSYMBOLTABLE(MIDPOINT) .KEY

184 LOW := MIDPOINT + 1;

185 end 1if;

186 end loop; (* DDP 9 End-WKhile r)
187 return (0);

188 -— item ie not in table

189

150 end LLFIND;

191

192 procedure LLPRTSTRING (STR : LLSTRINGS) is

193 -— print non-blank prefix of str in quotes

194

195 begin (* DDP 1 Begin)
196

197 PUT (STANDARD_ERROR, ’'"’);

198 for I in STR/range loop (* DDP 2 For_lLoop*)
199 exit when STR (I) = ' /; (* DDP 3 If »)
200 (* DDP 4 Else v)
201 PUT (STANDARD_ERROR, STR (I)):

202 end loop; (* DDP 5 End-For_Loop*
203 PUT (STANDARD_ERROR, ’'"’);

204

4 205 end LLPRTSTRING,

852 end LI_COMPILE;
853

Figure 16-4. Logiscope Commented Listing for Function LLFIND

16-10

@

Q

9 aNI4T7 uondun jo ydesn 1ejaly edoasiBon ‘-9 einbyd

0N

m. YEORINT : UINIBX : TILLETT: EONTULETT : ANIJTL/TIIAN0D T1

-l :queuodnoo 3o ydeib JuyATy

TA {UOTSIRA
Na¥ :ebenbueg 03w 1T :uojjeolrddy

- —

e SHINA N

g

[« B

6TIAT IVH
er"s 00°L 00°¢ mnui
8t'0 00°T 0T°0 ¥ WO
0 os T Idaoxa N
0 0 0 m&Bh.n.._
S (i1] 1 ¢ 6BIVA N
v S T STAT XN
S ot T 9A
Ls os¢ £ BIOT ¥4
1T 0s T SIRLS N
GOTVA 18 o1 oTuIEN
N i

16-11

PART i

Logiscope

QNI4T UoRduN4 Jo ydeio el edods)Bo ‘g-91 einbid

YADIINI : uxnI®X ATLLETT: SONINLETT: ANIJTL/TIIAR0D TI
:queucdmoo 3o tduib wire3§I1d

TA SUOTBISA
YQy :ebenbuwy oxw [Tv :uoyvoyrddy
wosad 4138 _
I s"aav AITTISIONT
FIAT XN
¥ wo0D
ud
DA
S oAV
OA
SINIS™H
o az14d00V ¢ ™NeO1D
IITIGNVISIL STAT VR ILIDITANIE @ W TTeeetet ZoTTEeReseees S
LNGHH0D OX © AINDS3d 4188
asSrdadonN ILITIGI09T

QEXLLEJOV ¢ ALIDITHOE
GALAGOON @ ILYITISVIREL

X800V ORI

16-12

Logiscope

PART Il

sjuauodwo) iy Jo ydess 18iap| edoas|Bon “2-9} 8inbid4

sjuaduodmo) 99
giusuodmoo 1Tv 3o ydexb utaty

TA IUOTEIOA

vay :ebenbuwy oxw [1e :uojjeotyddv
08°S 00°L 00°¢ 8 DAY
9T°0 00°T 0T°o ¥ ROO
00°0 0s 1 1a30x3 N
1o 0 0 sdRar N
99°6 08 T SHINd N
8Lt S L FIAT XN
10°9 ot T A
9£°L6 oSt [BIOT ua
00°9T oS T SINIS N

ROVHTAV 1" o1 OI¥IaN

16-13

YiBua weiboad 40} uolINQIAISIA SOHIOW l1e4eA0 @doas|Bon ‘g-91 einbi4

s3juauocdwo) 99 fuet wwiboxg IOFIION

QOTINATIISTP BOTIJON
B8TRAIOIUI T TA TUOTeINA
vay :ebunbueg oxw T :uoypjlwoyrddy

PART Il

HLOT 4d

188 T8 0TL €9°09S SY 00V L ore 60°0@ 0
1. |

N_

8S°T ot
ot
ot
ov
(]
09
oL
[+]

06

00t
(s) susuvodmo)

Logiscope

16-14

Logiscope

PART I

Axaidwiod 2118wi0j249 10} UCHNGIISIA SIMEW [1IB10AQ 0d0as1607 “6-91 ainbiy

sjuauodwo) 99 Iequnu ofJewoTaL) LOTIION
UOTINQTIISTD SOTIJON

sTwAIdlUT I TA IUOTSIGA

¥qay :abunbuwey oxwe (v :uopwofrddy

. V Y%

89 06°19 18°SS TL 6Y E9°EY ¥SLE 13 11 1 3 4 LT 6T BT €Y 60°L T
1 1 1

_ J 1 1 H

L 10 ¢

oT

ot

o€

oy

os

09

oL

a8

00T
(3) s3jueucden)

16-15

Logiscope PART il

| categori | Components | value |)]
es] | | |

1
b

LL_COMPILE/LL_TOKENS
L1_SUPPORT
3.03

'™

|
|
|
| LL_COMPILE
| LL_SUPPORT/LOOK_AHEAD:LLATTRIBUTE
| :return:LLATTRIBUTE

2 | LL_COMPILE/LLMAIN
|
|
|
|
|

NN

w N

LL_COMPILE/LL_TOKENS/ADVANCE/LOOK
_AHEAD .
L1_SUPPORT/ALTERNATE/MERGE_RANGES
: LLATTRIBUTE : LLATTRIBUTE: return:L
LATTRIBUTE

2 1LL_SUPPORT/COMPLETE_PATTERNS

2 LL_SUPPORT/EMIT_PATTERN_NAME:FILE
_TYPE: LLSTRINGS

2 | 11L_COMPILE/LLPRTTOKEN

2 LL_SUPPORT/CONCATENATE : LLATTRIBUT 4
E:LLATTRIBUTE:return: LLATTRIBUTE

w

-

W

2 | LL_SUPPORT/COMPLETE_PAT: LLATTRIBU | 30
TE
2 LL_COMPILE/LLMAIN/READGRAM/BUILDR 32
IGHT: INTEGER
2 LL_SUPPORT/COMPLETE_PAT/CONPLETE_ 39
ALT/RESTRICT : LLATTRIBUTE : SELECTIO
N_SET:return: LLATTRIBUTE

90.90
LlL_SUPPORT/COMPLETE_PAT/COMPLETE_
ALT/RESOLVE_AMBIGUITY: LLATTRIBUTE
Ll,_SUPPORT/EMIT_SCAN_PROC
LL_SUPPORT/EMIT_SCAN_PROC/EMIT_PA
TTERN_MATCH: LLATTRIBUTE : LLSTRINGS
: BOOLEAN : BOOLEAN : BOOLEAN
LL_CONPILE/LLTAKEACTION: INTEGER

56

84
85

85

w w

List of components per metrics category

Application: al)_arc

Version: vl
Language: ADA
Metric: Number of statements

e . s . S .

Components: 66

‘ Figure 16-10. Logiscope Components per Metrics Category for Number of Statements

16-16

Anngeise 10} uoINqLIsIQ BLRID J1eIeAQ odods)Bo “11-g1 einb)y

UOTAINGTIISTP VFISITID

ILITIGNISRL IUOYISITID

TA ‘UOTEINA
oxe 1@ :uorivoyrddy

0

~ ot
A
~ o€
- oy
~ oS
~ 09
oL
- o8

[~ 06

sLé

- 414} ¢
(s) sjusuvodmn)

@
a
(=]
]
0
Wv s3uaucdwod 99
-
sTvazdqUY £
y¥ay :ebunbuel
sayIobaze)
/ ZITEMEN O,
| 1
Tl
[+ o
<
Q.

16-17

PARTII

Logiscope

Ayaiiduns 10) uopnquIsia BHaIN) l1elaaQ 8doasiBo “Z1-91 ainb)4

sjusuodmo)

¥9

STUAIOUY §
Yqy :ebunbuet

UOTINQTIANTP VIINITID

ALIDIIANIS $UOTINITID

TA IUOTEIOA

oI TTe :uoy3ywoyTddy

satxobe3ye)
/ 100 oL / 1831701
1

P —————

$9°

/

T

OEASNI OL

/

s

oT
ot
413
oy
oS
09
oL

ﬁ o8

06

o 00T
(s) sjuevodmod

16-18

Logiscope

PART Il

uoday Ayjenp adoos)fo) ‘g1-91 ainbi4

sjusuodmo) »9

Ygy :ebunbue]

axoday Lagyend

TA iUOTRIBA

oav [Ie :uof3lworrddy

NIHNDOO 0L
1YddsNI ol
AIIYMEE OL
P—— [Y 4 naaguoa
st 0 1831 0L
s € 1DadsNI oL
s €L IRINOD0G OL
v L QRALITOOV
FONINIONRI XHOOZIND
o o ® ® o ® o

16-19

Logiscope PART I

{reference V3.1>

l
| Quality model definition
I

% 2 0 9% %

Quality Criteria Definition
MC

4 The aim of this table is to explain how the components
are classified for the TESTABILITY oriterion

¢
] TESTABILITY |
' I
¢ v6 |max_rvis| N_10 | associated diagnosis I
i |
$¢ OK | OK | OK | ((4t44#2)/10) * 100 = 100 ACCEPTED |
8 ox | ok | | ((4+4+0)/10) * 100 « 80 TO_STRUCTURE|
¢ ox | | Ok | ((440+2)/10) * 100 = 60 TO_CUT |
¢ ox | J] ((4+0+40)/10) * 100 = 40 .]
| ok | oK | ((0+4+2)/10) * 100 = 60 " |
] ox | | ((0+4+0)/10) * 100 = 40 " |
§ | | ok | ((0+0+2)/10) = 100 = 20 »]
! | | ((0+0+0)/10) * 100 = ©0 TO_REWRITE |
L
¢ For following languages :
4
/ADA
Component Level
¢ Text help definition
*AIDELECT® *CHAINE*
Rien = / ADA_statement(s)’
CONFIG Fise = ’'End Select’
Maxdec = 10
4 Users Metrics Definition
MD
Comments Frequency : COM R = N_COM/N_STMTS

Average size of statements : AVG_S = PR_LGTHE/N_STMTS

$ Editable metrics

SMEW*
N_STMTS I 1 50 MAX_LVLS b S
COM_R F 0.20 1.00 N_PATHS I 1 80
PR_LGTH I3 350 N_EXCEPT I
AVG_S F 3.00 7.00 N_JUMPS 10 0
vG 11 20

Figure 16-14. Logiscope Excerpt from Default Quality Mode!

16-20

50

Quality Criteria Definition

*MCw

TESTABILITY = VG + MAX_LVLS
ACCEPTED 100 100
TO_CUT 50 100
TO_REWRITE 0 50

40
10
0

PART lI

Logiscope

SIMPLICITY = 2#VG + 2*N_STMTS + AVG_S

LEGIBILITY = VG + PR_LGTH + MAX_LVLS + AVG_S SELF_DESCRIPTION = COM_R

ACCEPTED 75
T0_DOCUMENT 50
TO_INSPECT 0

Quality synthesis definition

100
75
50

BQ
ACCEPTED %0 100
TO_DOCUMENT 80 90
TO_INSPECT 50 60
TO_TEST 30 50
TO_REWRITE 0 30

ARCHITECTURE LEVEL

#

4 Users Metrics Definition

*AD%

20
15
0

Average Paths Number/Component :

4 Editable metrics
AEY

AVG_PA F 1.00
LEVELS) S |

KIER_CPX F 1,00
STRU_CPX P 0.50
ENTROPY F 1.00

2.00

5.00
3.00
3.00

Quality Criteria Definition

ACCEPTED 100 100 30
TO_DOCUMENT 80 100 25
TO_INSPECT 40 80 20
TO_TEST 20 40 10
TO_CUT 0o 20 0
ACCEPTED 100 100 10
TO_COMMENT 0 100 0

AVG_PA = CALL_PATHS/NODES

AC

MODULARITY = 3*HIER_CPX + 2*STRU_CPX + S*AVG_PA CLARITY = ENTROPY + 2*LEVELS
ACCEPTED 100 100 O ACCEPTED 100 100 ©
TO_DOCUMENT 80 100 O TO_DOCUMENT 60 100 O
NEED_LEVELS 50 80 0 TO_PACK 30 60 0
NEED_MODULAR 0o S0 o TO_CLARIFY 0o 30 0O

' L) L*4 ~ %4 L)

Figure 16-14 continued: Logiscope Excerpt from Default Quality Model

16-21

Logiscope

—— —— c—— —— i A

PART Il

1B | [{ [[

I 2 | 2 | 3 | & |
Test cases | | | | | Ccoverage
testl.lex | x | x | x | x | 100.00%
sanple.lex | x | x | x | x | 100.00%
Total | x | x | x | x | 100.00%

IB coverage of component:
LL_COMPILE/LLFIND:LLSTRINGS:LLSTYLE:return: INTEGER

Application: all_are2
Version: Vi
Language: ADA

Test Suite: TEST1.LEX

Figure 16-15. Logiscope |1B Coverage of Function LLFIND

16-22

I
|
|

PART I Logiscope
DDP
1 2 3 4 5 6 7
Tast cases
| IDA Test | 64 | 174 | 174 50 | 61 | 46 | 13 |
| Total | 64 | 174 | 174 50 | 62 | 46 | 13 |
DDP
8 9 10 11 12 13 14
Test cases
| IDA_Test [4 | o | 79 95 | 144 | 30 | o |
| Total | 4 | o | 79 95 | 144 | 30 | o |
DDP
15
Test cases Coverage
| IDA_Test) 64 | 86.66% |
| Total [64 | 86.66% |

Version:
Language:
Test Suite:

DDP coverage of component:

Application: ida
V1

ADA
CURRENT_TEST_SUITE

LL_COMPILE/LLMAIN/READGRAM/BUILDRIGHT : INTEGER

Figure 16-16. Logiscope DDP Coverage of Component BUILDRIGHT

16-23

Logiscope PART Il
DDP Line Type condition Executed
humber -
| 2 394 | Begin |] x |
2 397 | For_Loop I in x
THISRHS+1..THISRHS+PRODUC
TIONS (WHICHPROD) .CARDRHS
3 398	It	I <= LLRHSSIZE	x
4 402	case	CH = 71¢	x
5 407	case	CH = ‘a’ i X	
] 6 409	case	¢CH = ‘n’	x
7 4124	Case	CH = ‘g’] x]	
T 8 419 | case | CH = ’p’ | x |
l 9 421 I Else_Case CH <> ’'1*, ’'a’, ’'n’, ‘g’,
- 'p’
| 10 427 | It | END_OF_LINE (LLGRAM) | x |
| 11 429 | Else | not (END_OF_LINE(LLGRAM)) | x |
| 12 432 | It | END_OF_LINE (LLGRAM) | x !
| 13 434 | Else | not (END_OF_LINE(LLGRAM)) | x |
| 24 438 | Else | not (I <= LLRHSSIZE) | |
15 446 | End-For_Loop not (I in x
THISRHS+1..THISRHS+PRODUC
TIONS (WHICHPROD) .CARDRHS)
| DDP coverage { 86.66% |

DDP list of component:

LL_COMPILE/LLMAIN/READGRAM/BUILDRIGHT : INTEGER .

Application: ida’

Version:
Language:
Test Suite:

V1
ADA

CURRENT_TEST_SUITE

Figure 16-16 continued: Logiscope DDP Coverage of Component BUILDRIGHT

16-24

PARTII Logiscope
) LCSAT -
2 2 3 4 5 6 7
Test cases
| IDA_Test] 9 | o | 0 | 9 | 15 | 5 | 26 |
| Total i 9 | 0 | o | 9| 15 | 5] 26 |
LCSAT
8 9 10 22 12 13 14
Test cases
| IDA_Test | 0| o | ¢ | 13 | 46 | 61 | 38 |
| Total | o | 0 | 4| 13| 46 | 61 | 38 |
Lcsar
15 16 17 18 19 20 21
Test cases
| IDA_Test] 12| ol 79| o] 65 | 30 | 24s |
| Total | 12 | o | 79 | o | 65 | 30 | 144 |
LCSAT
22 23 24 25 26 27 28
Test cases
| IDA_Test | 30 | le4 | 51 | o | 2 | 3 | 26 |
| Total | 30 | les | 51 | o | 2 | 3| 26 |
LCSAT | -
29 30 n
Test cases Coverage
| IDA_rest | 48 | 14 | 0| 74.19% |
| Total | 48 | 16 | o | 74.19% |

LCSAJ coverage of component:
LL_COMPILE/LLMAIN/READGRAM/BUILDRIGHT:INTEGER

Application: ids
Version: vl
ADA

Language:
Test Suite: mm_rxsr_sum

Figure 16-17. Logiscope LCSAJ Coverage of Component BUILDRIGHT

16-25

Logiscope PART Il
Line Label Type Condition
number)
Begin
395 2 Statement(s)
397 wWhile I in
THISRHS+1..THISRHS+PRODUCTIO
NS (WHICHPROD) .CARDRHS
399 If I <= LLRHSSIZE
399 2 Statement(s)
401 Case
403 4 Statement(s) CH = /17
408 1 Statement(s) CH = ’a’
410 4 Statement (s) CH = ‘n’
415 4 Statement(s) CH = g’
420 1 Statement (s) CH = 'p’
424 1 Statement(s) CH <> ’1’, 'a’, ’n’, ‘g’,
Ipl
425 Raise PARSING_ERROR
426 End of Case
428 Ir END_OF_LINE (LLGRAM)
428 1 Statement(s)
430 Else
430 1 Statement(s)
431 End IZ
433 Ir END_OF_LINE (LLGRAM)
433 1 Statement(s)
435 Else
435 1 Statement(s)
436 End If
437 1 Statement(s)
440 Else
441 1 Statement(s)
444 Raise PARSING_ERROR
445 End If
446 End of While
447 End
Type | LCSAJ numbers
Begin 12345678 e se ss se sw e es se ss o

2 Statement(s)
While

Ir

2 Statement (s)
Case

4 Statement (s)
1 Statement(s)

4 Statement(s)

12345678
12345¢6 ; 8

.23 4567¢8

.o 23 24 25

.o

.o 25

.23 4567 ..

.o 25

.23 4567 ..

oo 25

27
27
27
27

28
28
28
28

12

29
29
29
29

13
29

30
30
30
30
30

se se s e e

.o

e se s s e

Figure 16-17 continued: Logiscope LCSAJ Coverage ot Component BUILDRIGHT

16-26

PART I Logiscope

ve o0 28

Zlse . .« a . te se es 20 20 oo seo oo 18 ..

N .
[
‘.
N
LY
.

. se ee ae oo o

-
. e 48 80 ee co e® se se

1 Statement(s) . o .

4 Statement(s) e . . ve 22 il he v e ee ee e

1 Statement(s) . 20 v vo te se se ae 4o se ws
e e ae se sa 10 26 it th v ee o as :

1 Statement(s) e @ e e e . . se ee es 6o se se e ow we :

Raise PARSING_ERROR B 2T

£nd of Case L 7 10111223 21415 oL
ve ot e se ss ss ee se se se 30 ..

Ir . e se ee o0 1425 .. oL

1 Statement(s) e e e e s e . e 2o se oo 14 L. ol

Zlse . ee oo se oo o¢ A5 29
20 co v 41 ts ws es as e 2e se ws

1 Statement(s) .« o e e e e to se es oo e se oo 19
20 . 44 o6 o4 s ee o5 ss ae ws e

Znd If : . e es os oo 14 17 28 29

' 20 t4 44 oo se es se ee se aa se es

Iz . ee ss a0 se es e sa 17 28 29
20 44 4o 4o oo ce e ss sa 48 se ea

1 Statenment(s) e e e e . o o0 es se s e o0 17 .. 29

N
~
B

L) .o LR 3 - e e L) L) 17 L) 1’

e oo o9 ses oo e

End If « e v e
21 22 ..
1l Statement(s) . . s .

.o 21 22 ..

. ee oo 29 4o ss e 0o s e o

. ee se o9 we s e

Else 8

e e se se ss oo 16 4u os e

1 Statement(s) N P R

Raise PARSING_ERROR S I R

£ 17 S
o2 .

22 23
End of While
es o8 oo 22

hd 10.0-'-.ol.-na-..'cc.’.o-

. o 00 o8 eo e oe su 20 we s

® 8 ¢ o 8 & 8 6 8 s s v B & 6 e 8 s 4 B B e s 8 e s & s e s 0 8 8 N s s s s e s s o

]
H]
9

. s ®6 se ee ss we

e se oe oo 2‘ e se o2 ¢4 se ee o

. LCSAYT list of component:
LL_COMPILE/LLMAIN/READGRAM/BUILDRIGHT: INTEGER

Application: ida

Version: vi

Language: ADA

Test Suite: CURRENT TEST_SUITE

Figure 16-17 continued: Logiscope LCSAJ Coverage of Component BUILDRIGHT

16-27

PART Ii

Logiscope

Yay :eabunbuwy

o o o o o L o o
weibois|H abeiano) gl adoasiBo 'g1-91 ainbid
sjuauodwo) e
weibol8Ty ebureaco g1
X1 TISIL OITNE ISdAL TA {UOYBIVA

goaw TTw :uofIwdfrddy

'

(y) ebexaaco d1
00T 06 08

oL

S8 EY

09

0S or

89sEd 9L T

ot
ot

11

oy

$9°0F

|

0s

00T
(3) s3jusuvodmo)

16-28

Logiscope

PART i

weisboisiH abrisno) daq 2doos|Bo “s1-91 @inbj4

sjusuodmo) €

XT1°TL6AL :93IFNE IWIL
Nay tebwnbuey

wexbolsiy abuwiaaoco aaqg

TA IUOFsIAGA
goxe [Te :uop3woyrddy

(s) ebuwzaaoco aaq
00T 06 08

867 LE

oL

0s

sesud 18001 ¢

ot

ot

(114

oy

L1 {3

LR

os
a9
B oL
[~ 08

- o6

00T
{(s) sjuauodu)

16-29

Logiscope PART Il
| Component | Number | IB
i | of IB | executed
| |)
| L1._COMPILE/LL_TOKENS | o | 0.00%
| LIL_COMPILE/LLMAIN/PARSE/TESTSYNCH { 3| 0.00%
| LL_COMPILE/LLMAIN/PARSE/TEST YNCH/SYNCHRONIZE | 10 | 0.00%
| LL_COMPILE/LLMAIN/PARSE/EXP} 'D/MATCH:INTEGER:return: | o | 0.00%
| INTEGER | |
| Ll_COMPILE/MAKE_TOKEN:NODE_T YPE: STRING: NATURAL: return | 13 | 0.00%
| :LLTOREN | |
| LL_COMPILE/MAKE_TOKEN/CVT_STRING:STRING:return:LLSTR : 2 { 0.00%
] INGS
| LL_COMPILE/GET_CHARACTER:BOCLEAN:CHARACTER:BOOLEAN | 3] 0.00%
| L1_COMPILE/LLFATAL | 1 0.00%
| L1_COMPILE/LLSKIPBOTH | 1| 0.00%
| LL_COMPILE/LLSKIPNODE | 1 0.00%
| LL_COMPILE/LLSKIPTOKEN | 1| 0.00%
| LYL_COMPILE/LLPRTTOKEN | 2 | 0.00%
| LL_COMPILE/LLPRTSTRING:LLSTRINGS | 3| 0.00%
| LL_COMPILE/LL_TOKENS/ADVANCE/NEXT CHARACTER | 5| 40.00%
| LL_COMPILE/LLTAKEACTION:INTEGER | 68 | 51.47%
| LL_COMPILE/LLMAIN/PARSE | 12 | 58.33%
| LIL_COMPILE/LLMAIN/PARSE/EXPAND | 9| 77.77%
| L1_COMPILE/LLMAIN/READGRAM/BUILDRIGHT : INTEGER | 14 | 85.71%
| LI_COMPILE/LLMAIN/READGRAM | 9 | 100.00%
| LL_COMPILE/LLMAIN/READGRAM/BUILDSELECT: INTEGER | 3 | 100.00%
| LL_COMPILE/LLMAIN/PARSE/ERASE | 3] 100.00%
| LL_COMPILE/LLNEXTTOKEN 2 | 100.00%
| LL_COMPILE/LL_TOKENS/ADVANCE/NEXT_SPEC_SYM 13 | 100.00%
| LL_COMPILE/LL_TOKENS/ADVANCE/NEXT_IDENTIFIER] 5 | 100.00%
| LIL_COMPILE/LL_TOKENS/ADVANCE:BOOLEAN:LLTOKEN: BOOLEAN | 10 | 100.00%
| LIL_COMPILE/LL_TOKENS/ADVANCE/LOOK_AHEAD { 1] 100.00%
| LiL_COMPILE/LL_TOXENS/ADVANCE/CHAR_ADVANCE 3| 100.00%
| LI,_COMPILE/LL_TOKENS/ADVANCE/GET_CHAR:CHARACTER 3| 100.00%
| LL_COMPILE { 1| 100.00%
| LL_COMPILE/LLMAIN | 1] 100.00%
| LL_COMPILE/LL_TOKENS/ADVANCE/NEXT_ STRING | 4 | 100.00%
| LI_COMPILE/LLFIND:LLSTRINGS:LLSTYLE:return:INTEGER | 4 | 100,008

| IB coverage for test suite
| Application: all_arc2

| Version: vi

| Language: ADA

| Test Suite: TEST1.LEX

Figure 16-20. Logiscope Overall IB Coverage tor input test1.lex

16-30

PART Ul Logiscope

] Component | Number | Number | DDP |
| | of DDP |of calls| executed |
| I !

LI_COMPILE/LLPRTSTRING: LLSTRINGS | 5 | o | 0.008 |

LL_COMPILE/LLPRTTOKEN | 3| 0 | 0.00% |

LL_COMPILE/LLSKIPTOKEN | 1| o | 0.008% |

LL_COMPILE/LLSKIPNODE | 1 0 | 0.00% |
| LL_COMPILE/LLSKIPBOTH | 1| 0 | 0.00% |
| LL_COMPILE/LLFATAL | 1| o | 0.00% |

11_COMPILE/GET_CHARACTER : BOOLEAN : CHARACTER: BOO| 5 | 0 | 0.00% |

LEAN . | | | |
LIL_COMPILE/MAKE_TOKEN/CVT_STRING:STRING:return	5	0	0.00%
:LLSTRINGS		[
LL_COMPILE/MAKE_TOKEN:NODE_TYPE: STRING:NATURAL	15	0	0.00%
:return:LLTOKEN	}		
LL_COMPILE/LLMAIN/PARSE/TESTSYNCH/SYNCHRONIZE	17	o	0.00%
LL_COMPILE/LLMAIN/PARSE/TESTSYNCH	5	0	0.00%
LL_COMPILE/LL_TOKENS/ADVANCE/NEXT_CHARACTER	5	31	40.00%
LI_COMPILE/LLTAKEACTION:INTEGER	69	659	52.17%
LL_COMPILE/LLMAIN/PARSE	19	2	57.89%
L%_COMPILE/LYL_TOKENS/ADVANCE:BOOLEAN: LLTOKEN:B	15	355	93.33%
oOLEAN			
1I._coMPILE	1 2	100.00%	
LL_COMPILE/LL TOKENS/ADVANCE/GET_CHAR:CHARCTER	5	2154	100.00%
LL_COMPILE/LL_TOKENS/ADVANCE/CHAR_ADVANCE	5	2152	100.00%
LL_COMPILE/LL_TOKENS/ADVANCE/LOOK_AHEAD	1	52	100.00%
LL_COMPILE/LLMAIN/READGRAM	11	2	100.00%
LL_COMPILE/LLNEXTTOKEN	3	355	100.00%
LIL_COMPILE/LLFIND:LLSTRINGS:LLSTYLE:return:INT	9	510	100.00%
EGER l	l I		
LL_COMPILE/LLMAIN/PARSE/ERASE	5	1105	100.00%
11_COMPILE/LIMAIN	1 2	100.00%	
LL_COMPILE/LL_TOKENS	1 2	100.00%	
LIL_COMPILE/LLMAIN/READGRAM/BUILDSELECT: INTEGER	3	128	100.00%

DDP coverage for test suite

|

[

| Application: all_arc2

| version: vi

| Language: ADA

| Test Suite: TEST1.LEX

Figure 16-21. Logiscope Overall DDP Coverage for input test1.lex

16-31

Logiscope PART Il
Metrics	Mnemonic	value	!
Number of levels	LEVELS	2	
Hierarchy complexity	BIER_CPX	1.00	
Structural complexity	sTrRU_CPX	0.50	
Control entropy	ENTROPY	0.00	=
Average Paths	avG_pa	0.50	=
Number/Component	I		
Metrics table of root:			
:			
LI_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE:LLSTRINGS			
Application: all_arc			
Vversion: vi			
Language: ADA			
Figure 16-22. Logiscope Metrics Table of Root			
I			
PATHS	Testability	Nodes	
“Li_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE:LL]		
STRINGS			
=“TEXT_YO/PUT:FILE_TYPE:CHARACTER	0.5000	2	

|
|
|
|
I
|
I

Call graph path testability of root:
LL_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE:LLSTRINGS
Application: all_arc

Version: vi
Language: ADA

Figure 16-23. Logiscope Call Graph Path Testabllity of Root

16-32

PART Il Logiscope

| Component | Access |

| LL_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE | 1.0000 |
| :LLSTRINGS I |
| TEXT_YO/PUT:FILE_TYPE:CHARACTER | 1.0000 |

Call graph component accessibility of root:
LL_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE:LLSTRINGS
Application: all_arc

Version: vl
Language: ADA

|
l
!
|
|
l
|

Figure 16-24. Logiscope Call Graph Component Accessibility of Root

| Num | Calling components | Num | Called components
| 49 | LL_SUPPORT/EMIT_PATTERN_NAME | 72 | TEXT_IO/PUT:FILE_TYPE:CHARAC |
] | :PILE_TYPE:LLSTRINGS | | TER)

Call graph calling/called components of root:
LL_SUPPORT/EMIT_PATTERN_NAME:FILE_TYPE:LLSTRINGS
Application: all_arc

Version: vl
Language: ADA

J
I
I
I
I
!
l

Figure 16-25. Logiscope Call Graph Calling/Called Components of Root

16-33

PARTII

Logiscope

100y jo ydein j1e) djweuiqg edoasifo ‘9z-91 e4nbid4

/7
:q00x 3o ydeixb 1TRD
X371 TISAL :©3TN§ IS3L _ TA UOFEI0A
XQy :ebunbuwy goxe {Te :uojjwoyrddy

16-34

| vl | Num | List of call graph components
1| 49 | LL_SUPPORT/EMIT_ PATTERN_NAME:FILE_TYPE:LLSTRINGS
1] 22| L1_COMPILE
1| 10 | LL_COMPILE/MAKE_TOKEN:NODE_TYPE: STRING: NATURAL: return: LLTOKEN
1 8 | LL_COMPILE/GET_CHARACTER:BOOLEAN:CHARACTER : BOOLEAN
1 § | LL_COMPILE/LLSKYPBOTH
1] 4 | L1 _COMPILE/LLSKIPTOKEN
2| 72 | TEXT_IO/PUT:FILE_TYPE:CHARACTER
2| 21 | LL_COMPILE/LLMAIN
2 | 9 | LI_COMPILE/MAKE_TOKEN/CVT_STRING:STRING:return:LLSTRINGS
3| 20 | LL_COMPILE/LLMAIN/PARSE
3| 14 | 11_COMPILE/LLMAIN/READGRAM
4 | 15 | LL_COMPILE/LLMAIN/PARSE/ERASE
4 | 17 | LL_COMPILE/LLMAIN/PARSE/EXPAND
4 { 12 | 11_COMPILE/LLMAIN/READGRAM/BUILDRIGHT : INTEGER
4 | 13 | LL_COMPILE/LIMAIN/READGRAM/BUILDSELECT:INTEGER
4 | 79 | TEXT_YO/CLOSE:FILE_TYPE
4| 78 | TEXT_IO/OPEN:FILE_TYPE:FILE MODE:STRING:STRING
$ | 16 | LL_COMPILE/LLMAIN/PARSE/EXPAND/MATCH: INTEGER:return: INTEGER
5| 19 | LL_COMPILE/LIMAIN/PARSE/TESTSYNCH
5| 80 | TEXT_YO/INTEGER_IO/GET:FILE_TYPE:NUM:FIELD
6 | 7 | 11L,_COMPILE/LLFATAL
6 | 18 | LL_COMPILE/LLMAIN/PARSE/TESTSYNCH/SYNCHRONIZE
7 { 11 | LL_COMPILE/LINEXTTOKEN
7| 66 | LL_COMPILE/LLTAKEACTION:INTEGER
8 | 30 | LL_COMPILE/LL_TOKENS/ADVANCE:BOOLEAN:LLTOKEN: BOOLEAN
13 | 39 | LL_SUPPORT/COMPLETE_PAT/COMPLETE_CONCAT: LLATTRIBUTE
13 | 55 | LIL_SUPPORT/EMIT_SCAN_PROC/EMIT_SELECT/EMIT_CHAR:CHRARACTER
14 | 71 | TEXT_IO/PUT:CHARACTER
14 | 68 | TEXT_I0/PUT:STRING
14 ! 33 } LL_SUPPORT/ALTERNATE: LLATTRIBUTE: LLATTRIBUTE : return: LLATTRIBU
T
14 ‘ 43 : LL_SUPPCRT/CONCATENATE : LLATTRIBUTE : LLATTRIBUTE : return : LLATTRI
BUTE
15 | 32 | LL_SUPPORT/ALTERNATE/MERGE_RANGES: LLATTRIBUTE: LLATTRIBUTE: ret
| | urn:LLATTRIBUTE
{ List of call graph components per level of root: |
I
| 77 |
] application: all_arc |
| version: vi |
| Language: ADA]

PART Ul Logiscope

Figure 16-27. Logiscope List of Call Graph Components per Level from Root

16-35

St T (. e o et S e S et e Tt i, e i S AP T, et i e, ot . e

Logiscope PART H|
PPP
1 2 3 4 5 6 7
Test cases
| IDA_Test | 1 1| 1] 1 | 2| 2 | 398 |
| Total | 1| 1 1| 1] 1| 2 | 398 |
PPP
8 9 10 12 12 13 14
Test cases .
| IDA_Test | 254 | 0| 13¢)| 230 | o} 254 | 0|
| Total | 254 | o} 13¢ | 230 | 0| . 25¢ | 0|
PPP
s 16 17 18 19 20 21
Test cases
| . IDA_Tast | 0| o | o | 0| o | o | o |
| Total | o | 0 | o | o | o | o | o |
PPP
8s 86 87 se
Test cases Coverage
| IDA_Test] o 1724 | 227 | 6¢ | 44.32% |
| Total | o| 127¢ | 227 | 64 | 44.31% |

Call graph PPP coverage of root:

LL_CONPILE
Application: ida
Version: vi

language: ADA
Test Suilte: CURRENT _TEST_SUITE

Figure 16-28. Logiscope PPP Coverage ot Root

16-36

PART I MALPAS

17. MALPAS

MALPAS comprises a suite of static analyzers that provide control flow, data use, in-
put/output dependency, and complexity analysis. It is unique among the examined tools in
providing symbolic execution and compliance analysis of code against a formal specifica-
tion.

17.1 Tool Overview

MALPAS was developed in the late 1970s at the United Kingdom Ministry of Defense
Royal Signals and Radar Establishment to verify avionics and other safety-critical defense
system software. Since 1986 it has been marketed and supported by TA Consultancy Ser-
vices, Ltd., formerly called Rex, Thompson & Partners (RTP). MALPAS has 50 users, in-
cluding 5 Ada sites. The Ada translator is a relatively new product released in July 1991.
RTP also markets seminars to introduce potential customers to MALPAS and training
courses. A user group is supported. MALPAS is available on VAX/VMS platforms. The
tools examined in this study were MALPAS Release 5.1, IL Version 5, Pascal-IL Transla-
tor 3.1, and Ada-IL Translator 1.01. The price for MALPAS and the Ada-IL translator at
the time was £60,000.

The analyses performed by MALPAS are intended to assure software safety, reliability,
consistency, and conformance to standards. They include the following:

» Control flow analysis to reveal the underlying program structure and unreachable
code.

+ Data flow analysis to detect uninitialized variables and successive assignments with-
out an intervening use.

« Information flow analysis to identify input-output dependencies.
« Path assessment to produce a structural complexity measure.

« Partial analysis using program slicing to reduce analysis time for semantic and com-
pliance analysis.

» Semantic analysis to provide symbolic execution for each loop-free path.
« Compliance analysis to verify code against formal specifications.

MALPAS analyses are based on an Intermediate Language (IL) representation of pro-
gram specifications or source code. Translators from several languages (including Ada, C,
Fortran, and Pascal) to IL are available. The approach of using a common intermediate lan-
guage for analyses simplifies the extension of MALPAS’s capabilities to other program-

17-1

MALPAS PART Il

ming languages. Formal program specifications can also be expressed in IL. At present no
automated translation tools for other formal specification languages such as OBJ, Vienna
Development Method (VDM), or Z are supported.

Analyzing application source code is a two-step process. First the code is translated into
IL. Since the Ada translator was not available when the tool examination started, the Pascal
translator was examined first. Pascal code is translated as a single complete program; this
is a straightforward process. The translation of Ada source code to IL is significantly more
complicated. The sample Ada code analyzed contained several separately compiled pack-
ages and subunits. First the generic input/output packages used by the program had to be
instantiated (by hand), translated, and loaded into an IL code library. Then each program
unit had to be translated and loaded into the IL code library.

The second step is to run the analyses on the IL code. A single tool controls all of the
available analyses. Options are selected by command line parameters and results are writ-
ten to files that can be printed. Default parameter settings for initial analyses of new code ®
were set up to include control flow, data use, and information flow analyses. Control flow,
data flow, and information flow analyses are fairly standard static analysis techniques.
Structured prograrmnming has largely eliminated control flow anomalies. Data flow and in-
formation flow anomalies, however, are still useful indicators of potential problems. Infor- ®
mation flow, for example, identifies all of a subprogram’s inputs and outputs, which may
be more than those passed as parameters.

The compliance and semantic analyses are computationally more complex. The partial

analysis capability allows these analyses to be restricted to particular modules or paths ®
within the program. MALPAS’s semantic analysis option provides symbolic execution of
loop-free code segments, that is, for each possible path through a segment, the value of each
modified variable is given as an algebraic expression in terms of the input variables. This
provides valuable feedback to a programmer about the meaning of the code and the resuits o
that will be produced when the code is executed. The compliance testing option uses this
same information to check formally specified requirements that have been added to the IL
code.
o
17.2 Observations
Ease of use. MALPAS is a batch-oriented tooi even though it may be invoked interac- ®
tively. The only user interaction is through the set of options that can be selected from the
17-2
o

e

PART i MALPAS

command line. The large number of options may make MALPAS “flexible” for expert us-
ers. Novice or casual users, however, may have some difficulty controlling non-default pro-

cessing.

Introducing the intermediate language for analyses may cause problems for some users.
All analyses and reports refer to the IL version of the program rather than to the original
source code. The mapping back to the original code must be done manually. The IL ap-
proach may simplify extending MALPAS to cover a range of different programming lan-
guages (by requiring only new IL translators), but it imposes a level of separation between
the actual source code and the analyses that must be compensated for by the user.

Translating Ada source code to the intermediate language was found to be somewhat
more complicated than expected. The sample Ada code analyzed contained several sepa-
rate packages and subunits, and normally requires several compilation steps. The MALPAS
Ada to IL translator, however, required several additional steps that Ada compilers either
do not need or are able to hide.

Documentation and user support. Installation and operating instructions were clear,
thorough, and accurate. Installation required simply editing sample command files to name
local directories and disks. The manuals included good examples and the tools operated ex-
actly as described.

Ada restrictions. Support for all aspects of Ada that can be analyzed statically is the
vendor’s eventual goal, however, the current MALPAS tools support only a subset of Ada.
The Ada to IL translator recognizes all valid Ada code but the translation to the intermedi-
ate language is not complete. The intermediate language, for example, does not include any
mechanism for concurrency, so Ada tasks cannot be translated. This restriction is particu-
larly unfortunate because execution-based testing of concurrent programs is often difficult
to control. Repeating a particular test, for example, might not produce the same results each
time. Rigorous static analyses of potential task interactions would contribute significantly
to identifying and correcting tasking problems.

Translation of Ada’s generic program units is not supported. Generic units provide a
powerful mechanism that simplifies programs and enhances reuse. Ada’s standard input
and output facilities, for example, are defined in terms of generic packages. MALPAS cur-
rently requires manual instantiation of any required generic units.

Access types (pointers) and dynamic storage allocation are not supported. Analysis of
unconstrained use of pointers, for example to detect potential “dangling” pointers, is virtu-

17-3

MALPAS PART I

ally impossible. A workaround for disciplined use of pointers for data structures such as
linked lists is to define abstract data types that encapsulate the pointers. MALPAS would
be able to analyze application code that used the abstract data types since the pointers are
hidden. MALPAS, however, would not be able to analyze an implementation of the ab-
straction that used pointers.

Problems encountered. The MALPAS tools performed as specified in their documen-
tation. No failures occurred in use.

17.3 Planned Additions

Version V6.0 of MALPAS (due for release in November, 1992) includes two additional
summary reports from the Semantic Analyser. These reports present key information from
the standard Semantic Analyser report in a form that may be easier to interpret. Both reports
present the conditions for and the assignments made on each path through each loop-free
section of code. The Paths Table report tabulates the conditions and the assignments made
to variables on each path. The Transforms report lists each variable and shows the condi-
tions under which each assignment will be made.

17.4 Sample Outputs

Figures 17-1 through 17-6 provide sample outputs from MALPAS.

17-4

PARTII MALPAS

program average (input, output);
{ This program shares a stream between two consumers by merging the)
{ processes and evaluating the result of the second process eagerly.)

type Tresulttype = integer; (consumer process result type)
streamelement = integer; { stream element type)

var conslresult: resulttype:; { result returned by consuner §1)
cons2result: resulttype; { result returned by consumer $2 }

{ Stream operations)
procedure advance (var eos: Boolean; var next: streamelement; more: Boolean);

const CR = 13; { Advance the actual input stream)
var ch: char;
bagin

if more then
if eof then
e0S := true
else begin
eos := false;
if eoln then begin
readln;
next := CR
end
else begin
read(ch);
next := ord{(ch)
end
end
end;

procedure consume; { Consume the input stream as one process }
var eos: Boolean; { (count stream elements and sum stream elements))}
next: streamelement;
begin
conslresult := 0;
consiresult := 0;
advance(eos, naxt,true);
while not eos do begin .

conslresult := consiresult + 1; { count stream elements)
consiresult := consiresult + pext; [sum stream elements }
advance(eos,next,true)
and;
end;
begin
CONnsuAe;

writeln(’The averag: of ’, consliresult:l,
! characters is "’, chr(cons2result div conslresult), ’'".’)

end.

Figure 17-1. MALPAS Sample Pascal Code lliustrating MALPAS Analyses’

1. Due to MALPAS's restrictions on analysis of Ada access types, the lexical analyzer code used as a
sample test program could not be thoroughly analyzed. To illustrate the reports that MALPAS produces a
simple Pascal program was substituted. This program and the MALPAS analysis reports are shown in the fol-

lowing figures.

17-5

MALPAS

(1}
fa)
[3]
(4]
16)

PART Il

TITLE average;

{ Pascal to Malpas IL Translator - Release 3.0)

_INCLUDE/NOLIST "USR: {ADATEST.PASCALIL30]FIXED.PREAMBLE"

*«r Including file USR: [ADATEST.PASCALIL3O)FIXED.PREAMBLE;]l *wx
*a% End of file USR: (ADATEST.PASCALIL30]FIXED.PREAMBLE;]l s=w

mn

_INCLUDE/NOLIST "USR: [ADATEST.PASCALIL30]TEXT.PREAMBLE"

»» Including file USR: (ADATEST.PASCALIL30}TEXT.PREAMBLE;1l #»»
**x End of file USR: [ADATESYT.PASCALIL30]TEXT,.PREAMBLE;1l »#+

(8)

(10)
{11}
(12}
[13)
(14])
{16)
an
(18]
[20)
[21})
[22)
(23}
[a4)

*2% WARNING :

(a5}
fas]
[an
{28)
139]
{30]

wx* WARNING :

(31]
(32]
[33)
(35)
(36}
{37}
[38)
[40]
(42]
{43]
(44]
145]
(46}
{47)
(48]
(49]
[50)
[51]
152)
(531

$1:
#3:
$5:

46:
47:
49:
#l0:

#11:
#132:
#8:

CONST cr : integer = +13;
CONST 1it__2__theaverage : char—array = "The average of *;
CONST lit__2__ characters : char-array = ® characters is ""*;
CONST lit__3 : char—array = """ .%;

[(* result returned by consumer #2 =]

[* Stream operations *)

PROCSPEC advance(INOUT aos : boolean,
INOUT next : integer,
IN more : boolean)
IMPLICIT ((** IL Global Parawater Saection =»]
INOUT ipput : text);

no DERIVES list specified for procedure advance

[* Advance the actual input stream *]

PROCSPEC consume

INPLICIT ([** IL Global Parameter Saction s*] .
INOUT conslresult, consiresult : integer
INOUT input : text),

no DERIVES list specified for procedure consume

{* Consume the input stream as one process *)
{* (count stream elements and sum stream elements) *}

MAINSPEC (INOUT input : text
INOUT output : text);

PROC advance;
VAR ch: char;
IF more THEN
IF eof_ _text(input) THEN
e0s := true
ELSE

eog = false;

IF eoln__text(input) THEN
text__readln(input);
next := cr

ELSE
text__read _char(input, ch);
next := char_pos{ch)

ENDIF

Figure 17-2. MALPAS Intermediate Language Translation of Sample

17-6

PART I MALPAS
{54] 4 ENDIF
(55]) #2; ENDIF
(56} #STOP: [SKIP]
[56) #END: ENDPROC [*advancer]
(57}
[58) PROC consume;
[60) VAR eos__6: boolean;
{61} VAR next__ 6: integer;
[63] 41 conslresult := 0;.
[64] 2 consiresult := 0
[65] $3:
[65] advance(eos__6, next_ 6, true);
*** WARNING : advance has not been fully specified
[66) 4 LOOP [while loop]
(67) #6: EXIT {while loop] WHEN NOT{ NOT eoB_ 6);
{e8] 47: conslresult := conslresult + 1;
[69) [* count stream elements =)
[70) 48: cons2result := coms2result + next_ 6;
{71} {* sum stream elements ¥}
(721 19:
[72) advance(eos__6, next__ 6, true)
=ws WARNING : advance has not been fully specified
[731 45: ENDLOOP {while loop]
{74} #STOP: [SKIP]
[74) $END: ENDPROC [*consumet]
[751
(76} MAIN
{79} VAR conslresult: integer;
[80] [* result returned by consumer #1 *}
[81] VAR consiresult: intager,
[83] #1:
[83] consume(),
*#% WARNING : consume has not besen fully specified
[84]) 42 text _write(output, 1it__1_ theaverage);
(950] #STOP: [SKIP) \
[90] #END: ENDMAIN
[93] [#a** WARNING : WARNINGS IN PASS 1 ... See Listing Frile)
{95] FINISH

= WARNING : Procedure body for text_ get has not bess defined
*** WARNING : Procedure body for text_ page has not been defined

*ws WARNING : Procedure body for text__writeln has not been defined

Figure17-2 continued: MALPAS Intermediate Language Transiation of Sample

17-7

MALPAS

HEmdadun
LI I I B IR I B B)

PART Il

After ONE-ONE, 13 nodes removed.
No nodes with self-loops ramoved.

Node id No of pred. Succ. nodes

$START 0 4END

#END 1

After KASAI (from ONE-ONE), No nodes removed.
After HECHT (from ONE-ONE), No nodes removed.
After HK (from HECHT), No nodes removed.
After TOTAL (from HK), No nodes removed.

Control Flow Summary

The procedure is well structured. .

The procedure has no unreachable code and no dynamic halts.

The graph was fully reduced after the following stages:
ONE-ONE, KASAI, HECHT, HK, TOTAL

The graph was not fully reduced after the following stages:
None

Figure 17-3. MALPAS Control Flow Analysis of ADVANCE

Key

Data read and not subsequently written on some path between the nodes

Data read and not previously written on some path between the nodes

Data written twice with no intervening read on some path between the nodes
Data written and not subsequently read on some path between the nodes

Data written and not previously read on some path batween the nodes

Data read on all paths between the nodes

Data written on all paths batween the nodes

Data xead on some path betwaen the nodes

Data written on some path betwsen the nodes

After ONE-ONE

From To Data Use Expression

node node .
#START {$END : ch input more

H
I : input AOTe

U : eos input next

V: ch eos next

R : more

E : ch input more
L:ch . e0s8 {input next

Susmary of Possible Errors

No errors detected

Figure 17-4. MALPAS Data Use Analysis of ADVANCE

17-8

PART Il

Information Flow

After ONE~ONE
From node #START to node $#END

Identifier may depend on identifier(s)
QOB IN8/INOUTs : eos input more
CONSTANTs : false true
next INs/INOUT@ : input more next
CONSTANTS : cY
input INg/INOUTs : input moxe
ch INs/INOUTs : input more
VARS/OUTs : ch
Identifier may depend on conditional node(s)
(Y- #3 41
next [2) 13 #1
input $7 43 1
ch #7 43 #1

Summary of Possible Errors

No errors detected

Figure 17-5. MALPAS Information Flow Analysis of ADVANCE

17-9

MALPAS

MALPAS PART Il

Semantic Analysis

After ONE-ONE

From node : $START
To node : $END

IF NOT(more)
THEN MAP
ENDMAP

(
ELSIF more AND sof__text(input)
THEN MAP

eos := true;
EINDMAP

[
ELSIF moxre AND eoln__text(ipput) AND NOT(eof__text(input))
THEN MAP

eos := false;

next := 13;

input := readln__text(input);
ENDMAP

[
ELSIF more AND NOT(eoln__text(input)) ANT NOT(eof__ text(input))
THEN MAP

aog :~ false;

next := char_pos(xead__text__char(input)).

input := gkip__text__ char(input);

ch := read__text__char(inmput);
ENDMAP ENDIF
{

Figure 17-6. MALPAS Semantic Anaiysis of ADVANCE

17-10

PART I QES/Manager

18. QES/MANAGER

QES/Manager is one component of the QES/Workbench. To fully understand the role
of QES/Manager, it is necessary first to look at the other workbench component, QES/Ar-
chitect. QES/Architect is a database system designed to create and manage testing data. It
has automatic capture/playback, test data generation, variable processing, and global edits.
Fully instrumented testcases can automatically change or generate test data via external
files, calculations, predetermined ranges, or system responses. Alternatively, test data can
be imported from external sources such as screen form builders or databases, or captured
from the workstation. Conditional execution is provided. By prototyping test data, usable
testcases can be created that provide a picture of the user interface. These testcases can act
as the specification and be used to simulate the system operation. QES/Manager is a subset
of QES/Architect. (The full QES/Architect product is expected to be examined in the near
future.) QES/Manager provides the data management facility that supports documenting
test plans and testing activities. It also provides for easy import of ASCII data and export
of data to automated test systems.

Additional workbench components expected to be released early in 1993 include QES/
Qease for keystroke capture/playback, QES/Programmer for automatic unit test design and
execution, and QES/Expert that aids a user in diagnosing the cause of a failure.

18.1 Tool Overview

QES/Manager is marketed by Quality Engineering Software, Inc. (QES). In addition to
quality assurance (QA) products, this company markets consulting and programming ser-
vices, specializing in showing customers how to improve QA and testing practices. A hot-
line support facility is available. QES/Manager was released in November 1991 and has
over 50 users. It is language independent and runs on IBM PC/AT, or compatible machines,
under MS-DOS 3.0 or higher. QES/Manager is compatible with local area networks
(LAN:s). It supports the following test environments: DOS, 5250/AS-400 emulation, 3270
emulation, asynchronous communications, UNISYS, and Tandem. Interfaces exist to sev-
eral test execution tools such as AutoTester.

The evaluation was performed on demonstration version 2.2 of QES/Manager running
on a WIN TurboAT. This demonstration version is fully functional, although limited in the

18-1

QES/Manager PART i

number and size of testcases that can be specified. At the time of evaluation, QES/Manager
prices started at $2,500. -

QES/Manager embodies a predefined test model. The basic test items are as follows:

« Testcases. Define the basic unit of test data. Each Testcase is intended to be an inde-
pendent, reusable testing element that tests one logical operation or module.

« Test Drivers. Group collections of Testcases so that a Test Driver consists of a list of
Testcases to be run in a specified order. Further levels of grouping are available: a
Test Driver List can be used to group Test Drivers, and Master Drivers to group Test
Driver Lists.

Together, Testcases and Drivers form the test plan. A map function showing the developed
organization of Testcases with Drivers is available from QES/Manager.

Relationships between test items are maintained using the standard nomenclature as-
sociated with databases. All named items have a keyword option which can be used for
such tasks as searching and forming organizational groupings. Testcases, for example, can
be classified by application or type of test, such as regression, acceptance, or system tests.

When prototyping test data, the contents of a Testcase are specified by user-defined
templates. When data is imported from another test tool, QES/Manager will automatically
define the necessary templates, without user intervention. In essence, a Testcase is equiv-
alent to a template with the associated input (keystrokes) and output (responses). Access is
provided to the sequence of keystrokes, not just the result. For example, once the Testcase
is created, the user can view both the sequence of keystrokes and the final entry format.
Different types of information can be attached to a Testcase to sequence, modify, identify,
and manage it. A full-screen editor is provided for creating and modifying templates. Tem-
plate fields can be either named or unnamed, however, global edits can be applied to named
fields. Default responses can be specified. Instead of manually entering test data, the user
can define converters that will import data from ASCII text files and transform it into QES/
Manager format.

Prior to using the Drivers to guide the execution of tests, the user can view actual se-
quencing of test inputs and outputs to assess their correctness. In sequence mode, QES/
Manager presents the operation of the application (as represented through its inputs and
outputs) in its natural flow. That is, it shows the sequence of default responses, keystrokes
applied to the default responses, and the response of the application to that input. A simu-
lation function provides a